

Hardware Manual

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY / M16C/60 SERIES

Before using this material, please visit our website to verify that this is the most updated document available.

Rev. 2.00

Revision date: Nov. 28, 2005

Renesas Technology www.renesas.com

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials -

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

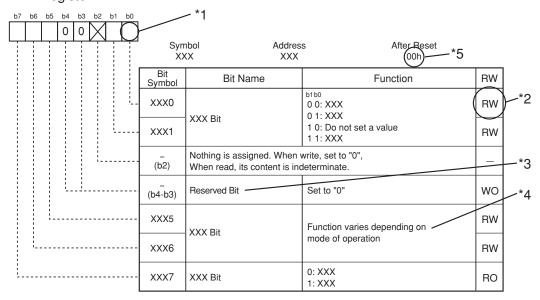
The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

How to Use This Manual

1. Introduction


This hardware manual provides detailed information on the M16C/6N Group (M16C/6NL, M16C/6NN) of microcomputers.

Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

XXX Register

*1

Blank:Set to "0" or "1" according to the application

0: Set to "0" 1: Set to "1"

X: Nothing is assigned

*2

RW: Read and write RO: Read only WO: Write only

Nothing is assigned

*3

· Reserved bit

Reserved bit. Set to specified value.

*4

Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

• Do not set to this value

The operation is not guaranteed when a value is set.

• Function varies depending on mode of operation

Bit function varies depending on peripheral function mode.

Refer to respective register for each mode.

*5

Follow the text in each manual for binary and hexadecimal notations.

3. M16C Family Documents

The following documents were prepared for the M16C family $^{\left(1\right)}$.

Document	Contents
Short Sheet	Hardware overview
Data Sheet	Hardware overview and electrical characteristics
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral
	specifications, electrical characteristics, timing charts)
Software Manual	Detailed description of assembly instructions and microcomputer
	performance of each instruction
Application Note	Application examples of peripheral functions
	Sample programs
	Introduction to the basic functions in the M16C family
	Programming method with Assembly and C languages
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.

NOTE:

1. Before using this material, please visit our website to verify that this is the most updated document available.

Table of Contents

SFR Page Reference	B-1
1. Overview	1
1.1 Applications	1
1.2 Performance Outline	2
1.3 Block Diagram	4
1.4 Product List	5
1.5 Pin Configuration	6
1.6 Pin Description	13
2. Central Processing Unit (CPU)	16
2.1 Data Registers (R0, R1, R2, and R3)	16
2.2 Address Registers (A0 and A1)	16
2.3 Frame Base Register (FB)	
2.4 Interrupt Table Register (INTB)	
2.5 Program Counter (PC)	
2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)	
2.7 Static Base Register (SB)	
2.8 Flag Register (FLG)	
2.8.1 Carry Flag (C Flag)	
2.8.2 Debug Flag (D Flag) 2.8.3 Zero Flag (Z Flag)	
2.8.4 Sign Flag (S Flag)	
2.8.5 Register Bank Select Flag (B Flag)	
2.8.6 Overflow Flag (O Flag)	
2.8.7 Interrupt Enable Flag (I Flag)	
2.8.8 Stack Pointer Select Flag (U Flag)	
2.8.9 Processor Interrupt Priority Level (IPL)	
2.8.10 Reserved Area	
3. Memory	18
4. Special Function Register (SFR)	19
5. Reset	31
5.1 Hardware Reset	31
5.1.1 Reset on a Stable Supply Voltage	31
5.1.2 Power-on Reset	31
5.2 Software Reset	33
5.3 Watchdog Timer Reset	33
5.4 Oscillation Stop Detection Reset	33
5.5 Internal Space	33
6. Processor Mode	34
6.1 Types of Processor Mode	34
6.2 Setting Processor Modes	34
7. Bus	40
7.1 Bus Mode	
7.1.1 Separate Bus	40
7.1.2 Multiplexed Bus	40

	7.2 Bus Control	41
	7.2.1 Address Bus	41
	7.2.2 Data Bus	41
	7.2.3 Chip Select Signal	41
	7.2.4 Read and Write Signals	43
	7.2.5 ALE Signal	43
	7.2.6 The RDY Signal	44
	7.2.7 HOLD Signal	45
	7.2.8 BCLK Output	45
	7.2.9 External Bus Status When Internal Area Accessed	47
	7.2.10 Software Wait	47
8.	Clock Generating Circuit	51
	8.1 Types of Clock Generating Circuit	51
	8.1.1 Main Clock	59
	8.1.2 Sub Clock	60
	8.1.3 On-chip Oscillator Clock	61
	8.1.4 PLL Clock	61
	8.2 CPU Clock and Peripheral Function Clock	63
	8.2.1 CPU Clock and BCLK	63
	8.2.2 Peripheral Function Clock	63
	8.3 Clock Output Function	63
	8.4 Power Control	64
	8.4.1 Normal Operation Mode	64
	8.4.2 Wait Mode	66
	8.4.3 Stop Mode	68
	8.5 Oscillation Stop and Re-oscillation Detection Function	73
	8.5.1 Operation When CM27 Bit = 0 (Oscillation Stop Detection Reset)	73
	8.5.2 Operation When CM27 Bit = 1 (Oscillation Stop, Re-oscillation Detection Interrupt)	73
	8.5.3 How to Use Oscillation Stop and Re-oscillation Detection Function	74
9.	Protection	75
10). Interrupt	76
	10.1 Type of Interrupts	
	10.2 Software Interrupts	
	10.2.1 Undefined Instruction Interrupt	
	10.2.2 Overflow Interrupt	
	10.2.3 BRK Interrupt	
	10.2.4 INT Instruction Interrupt	
	10.3 Hardware Interrupts	
	10.3.1 Special Interrupts	
	10.3.2 Peripheral Function Interrupts	
	10.4 Interrupts and Interrupt Vector	
	10.4.1 Fixed Vector Tables	
	10.4.2 Relocatable Vector Tables	
	10.4.2 Neiocatable vector rables	
	10.5.1 Flag	
	10.5.2 IR Bit	
	10.5.2 II VI 2 to II VI 0 Rite and IDI	ده

10.5.4 Interrupt Sequence	84
10.5.5 Interrupt Response Time	85
10.5.6 Variation of IPL when Interrupt Request is Accepted	85
10.5.7 Saving Registers	86
10.5.8 Returning from an Interrupt Routine	87
10.5.9 Interrupt Priority	87
10.5.10 Interrupt Priority Resolution Circuit	87
10.6 INT Interrupt	89
10.7 NMI Interrupt	93
10.8 Key Input Interrupt	93
10.9 CAN0 Wake-up Interrupt	93
10.10 Address Match Interrupt	94
11. Watchdog Timer	96
11.1 Count Source Protective Mode	97
12. DMAC	98
12.1 Transfer Cycle	103
12.1.1 Effect of Source and Destination Addresses	103
12.1.2 Effect of Source and Destination Addresses	103
12.1.3 Effect of Software Wait	103
12.1.4 Effect of RDY Signal	103
12.2 DMA Transfer Cycles	105
12.3 DMA Enable	106
12.4 DMA Request	106
12.5 Channel Priority and DMA Transfer Timing	107
13. Timers	108
13.1 Timer A	110
13.1.1 Timer Mode	114
13.1.2 Event Counter Mode	115
13.1.3 One-shot Timer Mode	120
13.1.4 Pulse Width Modulation (PWM) Mode	122
13.2 Timer B	125
13.2.1 Timer Mode	128
13.2.2 Event Counter Mode	129
13.2.3 Pulse Period and Pulse Width Measurement Mode	130
14. Three-Phase Motor Control Timer Function	133
15. Serial Interface	144
15.1 UARTi	144
15.1.1 Clock Synchronous Serial I/O Mode	154
15.1.2 Clock Asynchronous Serial I/O (UART) Mode	162
15.1.3 Special Mode 1 (I ² C Mode)	170
15.1.4 Special Mode 2	179
15.1.5 Special Mode 3 (IE Mode)	184
15.1.6 Special Mode 4 (SIM Mode) (UART2)	186
15.2 SI/Oi	191
15.2.1 SI/Oi Operation Timing	195
15.2.2 CLK Polarity Selection	195
15.2.3 Functions for Setting an SOUTi Initial Value	196

16. A/D Converter	197
16.1 Mode Description	201
16.1.1 One-shot Mode	201
16.1.2 Repeat Mode	203
16.1.3 Single Sweep Mode	205
16.1.4 Repeat Sweep Mode 0	207
16.1.5 Repeat Sweep Mode 1	209
16.2 Function	211
16.2.1 Resolution Select Function	211
16.2.2 Sample and Hold	211
16.2.3 Extended Analog Input Pins	211
16.2.4 External Operation Amplifier (Op-Amp) Connection Mode	211
16.2.5 Current Consumption Reducing Function	212
16.2.6 Output Impedance of Sensor under A/D Conversion	212
17. D/A Converter	214
18. CRC Calculation	216
19. CAN Module	218
19.1 CAN Module-Related Registers	
19.1.1 CAN Message Box	
19.1.2 Acceptance Mask Registers	
19.1.3 CAN SFR Registers	
19.2 CAN0 Message Box	
19.3 Acceptance Mask Registers	
19.4 CAN SFR Registers	
19.5 Operational Modes	230
19.5.1 CAN Reset/Initialization Mode	230
19.5.2 CAN Operation Mode	231
19.5.3 CAN Sleep Mode	231
19.5.4 CAN Interface Sleep Mode	231
19.5.5 Bus Off State	232
19.6 Configuration CAN Module System Clock	233
19.7 Bit Timing Configuration	233
19.8 Bit-rate	234
19.8.1 Calculation of Bit-rate	234
19.9 Acceptance Filtering Function and Masking Function	235
19.10 Acceptance Filter Support Unit (ASU)	236
19.11 Basic CAN Mode	237
19.12 Return from Bus Off Function	238
19.13 Time Stamp Counter and Time Stamp Function	238
19.14 Listen-Only Mode	238
19.15 Reception and Transmission	239
19.15.1 Reception	240
19.15.2 Transmission	241
19.16 CAN Interrupt	242

20. Programmable I/O Ports	243
20.1 PDi Register	244
20.2 Pi Register, PC14 Register	244
20.3 PURj Register	244
20.4 PCR Register	244
21. Flash Memory Version	256
21.1 Memory Map	257
21.1.1 Boot Mode	258
21.2 Functions to Prevent Flash Memory from Rewriting	258
21.2.1 ROM Code Protect Function	258
21.2.2 ID Code Check Function	258
21.3 CPU Rewrite Mode	260
21.3.1 EW0 Mode	261
21.3.2 EW1 Mode	
21.3.3 FMR0, FMR1 Registers	262
21.3.4 Precautions on CPU Rewrite Mode	267
21.3.5 Software Commands	
21.3.6 Data Protect Function	
21.3.7 Status Register (SRD Register)	
21.3.8 Full Status Check	
21.4 Standard Serial I/O Mode	
21.4.1 ID Code Check Function	
21.4.2 Example of Circuit Application in Standard Serial I/O Mode	
21.5 Parallel I/O Mode	
21.5.1 User ROM and Boot ROM Areas	
21.5.2 ROM Code Protect Function	
21.6 CAN I/O Mode	
21.6.1 ID Code Check Function	
21.6.2 Example of Circuit Application in CAN I/O Mode	
22. Electrical Characteristics	288
22.1 Electrical Characteristics	288
23. Usage Precaution	324
23.1 SFR	324
23.2 External Bus	325
23.3 External Clock	326
23.4 PLL Frequency Synthesizer	327
23.5 Power Control	328
23.3 Oscillation Stop, Re-oscillation Detection Function	330
23.7 Protection	331
23.8 Interrupt	332
23.8.1 Reading Address 00000h	332
23.8.2 Setting SP	332
23.8.3 NMI Interrupt	332
23.8.4 Changing Interrupt Generate Factor	333
23.8.5 INT Interrupt	333
23.8.6 Rewrite Interrupt Control Register	334
23.8.7 Watchdog Timer Interrupt	334

23.9 DMAC	335
23.9.1 Write to DMAE Bit in DMiCON Register	335
23.10 Timers	336
23.10.1 Timer A	336
23.10.2 Timer B	340
23.11 Thee-Phase Motor Control Timer Function	342
23.12 Serial Interface	343
23.12.1 Clock Synchronous Serial I/O Mode	343
23.13 A/D Converter	346
23.14 CAN Module	348
23.14.1 Reading C0STR Register	348
23.14.2 Performing CAN Configuration	350
23.14.3 Suggestions to Reduce Power Consumption	351
23.14.4 CAN Transceiver in Boot Mode	352
23.15 Programmable I/O Ports	353
23.16 Dedicated Input Pin	354
23.17 Electrical Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers	355
23.18 Mask ROM Version	356
23.19 Flash Memory Version	357
23.19.1 Functions to Prevent Flash Memory from Rewriting	357
23.19.2 Stop Mode	357
23.19.3 Wait Mode	357
23.19.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode	357
23.19.5 Writing Command and Data	357
23.19.6 Program Command	357
23.19.7 Lock Bit Program Command	357
23.19.8 Operation Speed	357
23.19.9 Prohibited Instructions	358
23.19.10 Interrupt	358
23.19.11 How to Access	358
23.19.12 Rewriting in User ROM Area	358
23.19.13 DMA Transfer	
23.20 Flash Memory Programming Using Boot Program	359
23.20.1 Programming Using Serial I/O Mode	359
23.20.2 Programming Using CAN I/O Mode	
23.21 Noise	
an andin 4. Dankana Dimanaiana	004
ppendix 1. Package Dimensions	361
egister Index	363

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

SFR Page Reference

Address	Register	Symbol	Page
0000h	riogistor	Cymbol	, ago
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	35
0005h	Processor Mode Register 1	PM1	36
0006h	System Clock Control Register 0	CM0	53
0007h	System Clock Control Register 1	CM1	54
0008h	Chip Select Control Register	CSR	41
0009h	Address Match Interrupt Enable Register	AIER	95
000Ah	Protect Register	PRCR	75
000Bh			
000Ch	Oscillation Stop Detection Register	CM2	55
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	97
000Fh	Watchdog Timer Control Register	WDC	97
0010h	Traterially Timer Control Hogister		0,
0011h	Address Match Interrupt Register 0	RMAD0	95
0011h	Address Materi Interrupt Hegister o	TIVIADO	
0012h			
0013h			
0014II	Address Match Interrupt Register 1	RMAD1	95
0015h	Address Mator Interrupt negister 1	I UNIAD I	95
0017h			
0017fi			
0019h			
0019h			
001An	Chip Select Expansion Control Register	CSE	47
001Bii	PLL Control Register 0	PLC0	47
001Ch	PLL Control Register 0	PLCU	58
001Eh	Dropper Made Degister 0	PM2	F7
001En	Processor Mode Register 2	PIVIZ	57
0020h	DMAG Garage Balantan	0.4.00	400
0021h	DMA0 Source Pointer	SAR0	102
0022h			
0023h			
0024h	DMAG B. E. E. B. C.	D 4 D 0	400
0025h	DMA0 Destination Pointer	DAR0	102
0026h			
0027h			
0028h	DMA0 Transfer Counter	TCR0	102
0029h			
002Ah			
002Bh		B	,
002Ch	DMA0 Control Register	DM0CON	101
002Dh			
002Eh			
002Fh			
0030h			
0031h	DMA1 Source Pointer	SAR1	102
0032h			
0033h			
0034h			
0035h	DMA1 Destination Pointer	DAR1	102
0036h			
0037h			
0038h	DMA1 Transfer Counter	TCR1	102
0039h	DIVIAT Hansiel Counter	10111	102
003Ah			
003Bh			
003Ch	DMA1 Control Register	DM1CON	101
003Dh	- 9		
003Eh			
003Fh			

Address	Register	Symbol	Page
0040h	педіліві	Зуппон	гауе
0040H	CAN0 Wake-up Interrupt Control Register	C01WKIC	81
0041h	CANO Successful Reception Interrupt Control Register	CORECIC	81
0043h	CANO Successful Transmission Interrupt Control Register	C0TRMIC	81
0044h	INT3 Interrupt Control Register	INT3IC	82
0045h	Timer B5 Interrupt Control Register	TB5IC	81
	SI/O5 Interrupt Control Register	S5IC	81
0046h	Timer B4 Interrupt Control Register UART1 Bus Collision Detection Interrupt Control Register	TB4IC U1BCNIC	81 81
	Timer B3 Interrupt Control Register	TB3IC	81
0047h	UARTO Bus Collision Detection Interrupt Control Register	U0BCNIC	81
0048h	SI/O4 Interrupt Control Register	S4IC	82
004611	INT5 Interrupt Control Register	INT5IC	82
0049h	SI/O3 Interrupt Control Register	S3IC	82
	INT4 Interrupt Control Register	INT4IC	82
004Ah 004Bh	UART2 Bus Collision Detection Interrupt Control Register DMA0 Interrupt Control Register	U2BCNIC DM0IC	81 81
004BII	DMA1 Interrupt Control Register	DM1IC	81
004Dh	CAN0 Error Interrupt Control Register	C01ERRIC	81
004Eh	A/D Conversion Interrupt Control Register	ADIC	81
004EII	Key Input Interrupt Control Register	KUPIC	81
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	81
0050h	UART2 Receive Interrupt Control Register	S2RIC	81
0051h	UARTO Transmit Interrupt Control Register	SOTIC	81
0052h 0053h	UARTO Receive Interrupt Control Register UART1 Transmit Interrupt Control Register	S0RIC S1TIC	81 81
0053h	UART1 Receive Interrupt Control Register	S1RIC	81
0055h	Timer A0 Interrupt Control Register	TA0IC	81
0056h	Timer A1 Interrupt Control Register	TA1IC	81
0057h	Timer A2 Interrupt Control Register	TA2IC	82
003711	INT7 Interrupt Control Register	INT7IC	82
0058h	Timer A3 Interrupt Control Register	TA3IC	82
	INT6 Interrupt Control Register	INT6IC	82
0059h	Timer A4 Interrupt Control Register Timer B0 Interrupt Control Register	TA4IC TB0IC	81
005Ah	SI/O6 Interrupt Control Register	S6IC	81 81
00501	Timer B1 Interrupt Control Register	TB1IC	82
005Bh	INT8 Interrupt Control Register	INT8IC	82
		11 4 1 010	02
005Ch	Timer B2 Interrupt Control Register	TB2IC	81
005Dh	Timer B2 Interrupt Control Register INTO Interrupt Control Register	TB2IC INT0IC	81 82
005Dh 005Eh	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh	Timer B2 Interrupt Control Register INTO Interrupt Control Register	TB2IC INT0IC	81 82
005Dh 005Eh 005Fh 0060h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h	Timer B2 Interrupt Control Register INTO Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h	Timer B2 Interrupt Control Register INTO Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h	Timer B2 Interrupt Control Register INTO Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0066h	Timer B2 Interrupt Control Register INTO Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0066h	Timer B2 Interrupt Control Register INTO Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h	Timer B2 Interrupt Control Register INTO Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h	Timer B2 Interrupt Control Register INTO Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0066h 0066h 0067h 0068h 0069h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0066h 0066h 0067h 0068h 0069h 006Ah	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0066h 0066h 0067h 0068h 0069h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0069h 006Ah	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field	TB2IC INT0IC INT1IC	81 82 82
005Dh 005Eh 005Fh 0065Fh 0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0069h 006Ah 006Bh	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0060h 0061h 0063h 0063h 0065h 0066h 0067h 0068h 0069h 006Bh 006Ch 006Ch 006Ch	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0067h 0068h 0069h 006Ah 006Ch 006Ch 006Ch 006Ch	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0067h 0068h 0069h 006Ch 006Ch 006Ch 006Ch 006Ch 006Ch	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0066h 0067h 0068h 0069h 006Ah 006Ch 006Ch 006Ch 006Ch 0070h 0071h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0066h 0066h 0067h 0068h 006Bh 006Ch 006Ch 006Ch 006Ch 007Dh 007Dh 0071h 0072h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0065Fh 0060h 0061h 0062h 0063h 0065h 0066h 0067h 006Bh 006Ch 006Ch 006Ch 006Ch 006Fh 0071h 00721h 00721h 0073h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0065Fh 0060h 0061h 0062h 0063h 0065h 0067h 0068h 0067h 006Bh 006Ch 006Dh 006Ch 006Fh 007Oh 0072h 0072h 0073h 0074h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0065Fh 0060h 0061h 0062h 0063h 0065h 0066h 0067h 006Bh 006Ch 006Ch 006Ch 006Ch 006Fh 0071h 00721h 00721h 0073h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 006Sh 0061h 0063h 0063h 0063h 0066h 0067h 0068h 006Ch 006Ch 006Ch 006Ch 006Ch 007Dh 0071h 0072h 0073h 0073h 0074h 0075h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 006Sh 0061h 0063h 0063h 0068h 0066h 0067h 0068h 006Ch 006Dh 006Ch 006Dh 0071h 0072h 0073h 0074h 0073h 0074h 0075h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0066h 0067h 0068h 0069h 006Ah 006Bh 006Ch 006Ch 006Ch 0071h 0072h 0073h 0074h 0075h 0077h 0078h 0079h 0079h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0065Fh 0060h 0061h 0062h 0063h 0066h 0067h 0068h 0066h 006Ch 006Dh 006Ch 0071h 0072h 0073h 0074h 0075h 0076h 0077h 0078h 0078h 0078h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0065Fh 0060h 0061h 0062h 0063h 0066h 0067h 0068h 0060h 006Ch 006Ch 006Ch 006Ch 0070h 0072h 0073h 0074h 0075h 0077h 0077h 0077h 0077h 0078h 0079h 0079h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82 82 82
005Dh 005Eh 005Fh 0065Fh 0060h 0061h 0062h 0063h 0066h 0067h 0068h 0066h 006Ch 006Dh 006Ch 0071h 0072h 0073h 0074h 0075h 0076h 0077h 0078h 0078h 0078h	Timer B2 Interrupt Control Register INT0 Interrupt Control Register INT1 Interrupt Control Register INT2 Interrupt Control Register INT2 Interrupt Control Register CAN0 Message Box 0: Identifier / DLC CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC	TB2IC INT0IC INT1IC	81 82 82 82 82

CANO Message Box 2: Identifier / DLC	Address	Register	Symbol	Page
0081h 0082h 0083h 0084h 0085h 0086h 0087h 0088h 0088h 0088h 0088h 0088h 0080h 0080h 0080h 0090h 0091h 0092h 0093h 0094h 0095h 0099h 0099h 0099h 0090h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 00000h 00000h 000000		riogister	Cymbol	1 ago
0082h 0083h 0086h 0085h 0086h 0087h 0088h 0080h 0080h 0080h 0080h 0080h 0080h 0090h 0091h 0091h 0092h 0093h 0099h 0099h 0099h 0099h 0090h 00000h 00000h 00000h 00000h 00000h 00				
ORANO Message Box 2: Identifier / DLC				
0084h 0085h 0086h 0087h 0088h 0089h 008Ah 008Ah 008Ch 008Ch 008Eh 008Ch 008Eh 008Dh 009Dh 0090h 0091h 0092h 0094h 0094h 0095h 0096h 0097h 0098h 0099h 0090h 0099h 0090h 0099h 0090h 0099h 0099h 0091h 0021h 00A3h 0034h 00A3h 0034h 00A3h 0034h 00A2h <td></td> <td>CAN0 Message Box 2: Identifier / DLC</td> <td></td> <td></td>		CAN0 Message Box 2: Identifier / DLC		
0085h 0086h 0087h 0088h 0089h 0080h 008Dh 0080h 008Ch 0080h 008Eh 0086h 0095h 0090h 0091h 0091h 0092h 0093h 0095h 0096h 0097h 0098h 0099h 0090h 0096h 0097h 0099h 0090h 0099h 0008h 0040h 0040h 0041h 0040h 0041h 0040h 0041h 0040h 0041h 0040h 0041h 0040h 0042h 0040h 0041h 0040h 0042h 0040h 0041h 0040h 0041h <td></td> <td></td> <td></td> <td></td>				
O086h O087h O088h O089h O080h O080h O080h O080h O080h O080h O080h O080h O099h O090h O080h O080				
O087h O088h O080h O090h O091h O092h O099h O099h O099h O099h O099h O099h O099h O099h O090h O090				
0088h 0088h 008Bh 008Ch 008Ch 008Ch 008Ch 009Ch 009Eh 0099h 0099h 0099h 0099h 0099h 0099h 0099h 0099h 0090h 0000h 0000h 0000h 0000h 00000h 00000h 00000h 00000h 00000h 00000h 0				
0089h 008Ah 008Ch 008Ch 008Ch 008Ch 008Ch 008Ch 009Ch 0099h 0099h 0093h 0099h 0099h 0099h 0099h 0090h 00000h 00000h 000000				
008Ah 008Bh 008Ch 008Ch 008Ch 008Ch 008Ch 009Ch 0090h 0090h 0093h 0093h 0093h 0093h 0099h 0099h 0099h 0090h 0000h 0000h 0000h 0000h 0000h 0000h 00000h 00000h 000000				
008Bh 008Ch 008Eh 008Eh 009Eh 009Sh 0099h 0099h 0099h 0099h 0099h 0099h 0099h 0099h 0099h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 00000h 00000h 00000h 00000h 00000h 00000h 0		CAN0 Message Box 2: Data Field		
008Ch 008Ch 008Fh 009Fh 0097h 0093h 0094h 0093h 0099h 0099h 0097h 0099h 0099h 0099h 0099h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0040h 0040h 00A1h 00A3h 00A4h 00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A6h 00A7h 00A8h 00A8h 00A9h 00A8h 00A9h 00A8h 00A9h 00A8h 00A8h 00A8h 00A6h 00A7h 00A8h 00B8h 0	L			
008Dh 008Eh 008Fh 0096h 0090h 0093h 0093h 0094h 0095h 0096h 0097h 0098h 0099h 0090h 00000h 00000h 00000h 00000h 00000h 00				
008Eh 008Fh 0090h 0090h 0092h 0093h 0094h 0095h 0096h 0097h 0098h 0099h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 0090h 00000h 00000h 00000h 00000h 00000h 00000h 0	—			
Oo8Fh Oo90h Oo91h Oo92h Oo93h Oo94h Oo93h Oo99h Oo99h Oo99h Oo99h Oo90h Oo40h Oo40	—			
Oog9th		CAN0 Message Box 2: Time Stamp		
Oog1h				
Oo92h				
One				
0094h 0095h 0096h 0097h 0098h 0099h 0099h 0090h 0040h 0040	—	CAN0 Message Box 3: Identifier / DLC		
O095h O096h O097h O098h O099h O090h O000h O0000h O000h O000h O000h O000h O000h O000h O000h O0000h O000h O0000h O000h O000h O000h O000h O0000h O000h O000h				
One				
One	—			
O098h O099h O090h O080h O080				
0099h 009Ah 009Bh 009Ch 009Ph 009Fh 009Fh CAN0 Message Box 3: Time Stamp 220 221 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A0h CAN0 Message Box 4: Identifier / DLC 0A0Ah 00A8h 00A0h 00ACh 00ADh CAN0 Message Box 4: Data Field 0A0Ah 00ACh 00ADh CAN0 Message Box 4: Time Stamp 0BBh 00B3h 00B3h 00B3h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh CAN0 Message Box 5: Identifier / DLC 0AN0 Message Box 5: Data Field CAN0 Message Box 5: Data Field				
009Ah 009Bh 009Ch 009Dh 009Fh 009Fh 009Fh 000A0h 00A0h 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00A0h 00A0h 00ADh CAN0 Message Box 4: Identifier / DLC 220 CAN0 Message Box 4: Identifier / DLC 221 CAN0 Message Box 4: Data Field 00A9h 00A9h 00A9h 00A0h 00ADh CAN0 Message Box 4: Time Stamp 00B0h 00B1h 00B3h 00B3h 00B6h 00B7h 00B8h 00B9h 00BAh 00B0h 00B0h CAN0 Message Box 5: Identifier / DLC CAN0 Message Box 5: Data Field CAN0 Message Box 5: Data Field				
009Bh 009Ch 009Dh 009Eh 009Fh CAN0 Message Box 3: Time Stamp 00A0h 00A1h 00A2h 00A3h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00A9h 00A9h 00A9h 00A0h 00A9h 00ACh 00A9h 00Bh 00Bh		CAN0 Message Box 3: Data Field		
009Ch 009Dh 009Eh CAN0 Message Box 3: Time Stamp 00A0h 00A1h 00A2h CAN0 Message Box 4: Identifier / DLC 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h CAN0 Message Box 4: Data Field 00ABh 00ACh 00ACh 00ACh 00AFh CAN0 Message Box 4: Time Stamp 00B0h CB1h 00B3h CAN0 Message Box 5: Identifier / DLC 00B6h 00B7h 00B8h CAN0 Message Box 5: Data Field 00Bh 00Bh				
009Dh 009Eh 009Fh 009Fh 0009Fh 0009Fh 0009Fh 00009Fh 000009Fh 00009Fh 00009Fh 00009Fh 00009Fh 00009Fh 000009Fh 000009Fh 000009Fh 000009Fh 0000009Fh 0000009Fh 00000009Fh 000000000000000000000000000000000000	—			
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A8h 00A9h 00A9h 00A9h 00ABh 00ACh 00ACh 00ADh CAN0 Message Box 4: Identifier / DLC CAN0 Message Box 4: Data Field CAN0 Message Box 4: Time Stamp CAN0 Message Box 4: Time Stamp CAN0 Message Box 5: Identifier / DLC CAN0 Message Box 5: Identifier / DLC CAN0 Message Box 5: Data Field CAN0 Message Box 5: Data Field CAN0 Message Box 5: Data Field				
OO9Fh	L			
OOA0h	—	CAN0 Message Box 3: Time Stamp		220
00A2h CAN0 Message Box 4: Identifier / DLC 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00A9h 00ABh 00ACh 00ACh 00ACh 00AEh 00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B7h 00B8h 00B7h 00B8h 00BCh 00BCh 00BCh 00BCh 00BCh 00BCh 00BCh 00BCh 00BEh CANO Message Box 5: Time Stame				221
OOA3h OOA4h OOA5h OOA6h OOA7h OOA8h OOA9h OOAAh OOABh OOACh OOACh OOACh OOACh OOACh OOACh OOACh OOB1h OOB1h OOB3h OOB3h OOB3h OOB6h OOB7h OOB8h OOB9h OOB0h OOB0h OOB0h OOB1h OOB0h OOB1h OOB0h OOB0h OOB1h OOB0h	00A1h			
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00A9h 00ACh 00ACh 00ACh 00ACh 00ACh 00AFh 00AFh 00B0h 00B1h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BCh	00A2h	041014		
00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00AEh 00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B7h 00B8h 00B9h 00BCh		CAN0 Message Box 4: Identifier / DLC		
00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00ACh 00AFh 00B1h 00B2h 00B3h 00B3h 00B6h 00B6h 00B7h 00B8h 00B9h 00B8h 00B0h 00B1h 00B8h 00B9h 00BAh 00BBh 00BCh	00A4h			
00A7h 00A8h 00A9h 00AAh 00AAh 00ABh 00ACh 00ADh 00AEh 00AFh 00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BCh 00BCh 00BCh 00BCh 00BCh 00BCh 00BEh CANO Message Box 5: Time Stamp	00A5h			
00A8h 00A9h 00AAh 00AAh 00ABh 00ACh 00ACh 00ADh 00AEh 00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BCh 00BCh 00BCh 00BCh 00BCh 00BCh 00BCh 00BEh CANO Message Box 5: Time Stamp	00A6h			
00A9h CAN0 Message Box 4: Data Field 00ABh 00ACh 00ADh 00AEh 00AFh CAN0 Message Box 4: Time Stamp 00B0h 00B1h 00B2h CAN0 Message Box 5: Identifier / DLC 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BCh 00BCh 00BCh 00BCh 00BEh CAN0 Message Box 5: Time Stamp				
OOAAh OOABh OOACh OOACh OOACh OOACh OOAFh OOBOh OOB1h OOB3h OOB5h OOB6h OOB7h OOB6h OOB7h OOB8h OOB0h	00A8h			
00AAh 00ACh 00ACh 00ACh 00ACh 00ACh 00AFh 00BCh 00BCh 00BSh 00BCh 00BCh 00BCh	00A9h	CANO Magaga Boy 4: Data Field		
00ACh 00ADh 00AEh 00AFh 00AFh CAN0 Message Box 4: Time Stamp 00B0h 00B1h 00B2h CAN0 Message Box 5: Identifier / DLC 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BCh 00BCh 00BDh CAN0 Message Box 5: Time Stamp	00AAh	CANU WESSAYE DUX 4: Data FIEID		
00ADh 00AEh CAN0 Message Box 4: Time Stamp 00B0h 00B1h 00B2h CAN0 Message Box 5: Identifier / DLC 00B3h CAN0 Message Box 5: Identifier / DLC 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh CAN0 Message Box 5: Data Field 00BCh 00BDh 00BEh CAN0 Message Box 5: Time Stamp	00ABh			
00AEh 00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh 00BCh CAN0 Message Box 5: Identifier / DLC 00AEh 00B3h 00B6h 00B7h 00B8h 00B0h CAN0 Message Box 5: Data Field 00B6h 00BCh 00BCh CAN0 Message Box 5: Data Field				
00AFh CANO Message Box 4: Time Stamp 00B0h 00B1h 00B2h CANO Message Box 5: Identifier / DLC 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BCh 00BCh 00BDh CANO Message Box 5: Time Stamp				
0080h 0081h 0082h 0082h 0083h 0084h 0085h 0086h 0087h 0088h 0089h 008Ah 008Bh 008Dh 008Ch 008Ch 008Ch 008Ch 008Ch		CANO Massaga Boy 4: Timo Stamp		
00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh 00BCh 00BCh 00BBh 00BCh 00BBh 00BCh 00BBh 00BCh 00BBh 00BCh 00BBh 00BCh		OANO MESSAYE DOX 4. TITTE STATTP		
00B2h CAN0 Message Box 5: Identifier / DLC 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00B8h 00B9h 00BBh 00BCh 00BDh 00BEh CANO Message Box 5: Time Stamp				
OOB3h OOB4h OOB5h OOB6h OOB7h OOB8h OOB9h OOBAh OOBCh OOBDh OOBCh OOBCh OOBCh OOBCh OOBCh OOBCh OOBCh OOBCh OOBCh				
00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh 00BCh		CANO Massage Boy 5: Identifier / DLC		
00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh 00BCh 00BCh 00BCh 00BCh		Or and inicessage box 5. Identifier / DEC		
00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh 00BDh				
00B7h 00B8h 00B9h 00BAh 00BBh 00BCh 00BDh				
00B8h 00B9h 00BAh 00BBh 00BCh 00BDh				
OOB9h OOBAh OOBBh OOBCh OOBDh OOBEh				
OOBAh OOBBh OOBCh OOBDh OOBEh CANO Message Box 5: Data Field				
00BBh 00BCh 00BDh		CANO Message Boy 5: Data Field		
00BCh 00BDh 00BEh		Or 1140 IVICOGAGO DON O. Data I IGIU		
00BDh 00BEh CANO Maccago Poy 5: Timo Stamp				
00BEh				
00BFh 57 11 to Micoodge Box 6. Tillie Stallip		CANO Message Box 5: Time Stamp		
	00BFh	5 to incodago box o. Time otamp		

Address	Register	Symbol	Page
00C0h			
00C1h			
00C2h	CAN0 Message Box 6: Identifier / DLC		
00C3h	CANO Message Box 6. Identilier / BEC		
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h	CANO Magaga Boy 6: Data Field		
00CAh	CAN0 Message Box 6: Data Field		
00CBh			
00CCh			
00CDh			
00CEh	CAN0 Message Box 6: Time Stamp		
00CFh	CANO Message Box 6. Time Stamp		
00D0h			
00D1h			
00D2h	CAN0 Message Box 7: Identifier / DLC		
00D3h	5 to Mossage Box 7. Identifier / DEC		
00D4h			
00D5h			
00D6h			
00D7h			
00D8h			
00D9h	CAN0 Message Box 7: Data Field		
00DAh	Critto Message Box 7. Bata 1 loid		
00DBh			
00DCh			
00DDh			
00DEh	CAN0 Message Box 7: Time Stamp		000
00DFh			220
00E0h			221
00E1h			
00E2h	CAN0 Message Box 8: Identifier / DLC		
00E3h	3		
00E4h			
00E5h			
00E6h			
00E7h 00E8h			
00E9h			
00E9h	CAN0 Message Box 8: Data Field		
00EAn			
00EGh			
00EDh			
00EBh			
00EFh	CAN0 Message Box 8: Time Stamp		
00E111			
00F1h			
00F2h			
00F3h	CAN0 Message Box 9: Identifier / DLC		
00F4h			
00F5h			
00F6h			
00F7h			
00F8h			
00F9h			
00FAh	CAN0 Message Box 9: Data Field		
00FBh			
00FCh			
00FDh			
00FEh	0411014		
00FFh	CAN0 Message Box 9: Time Stamp		
	•		

Address	Register	Symbol	Page
0100h	riogister	Cymbol	1 agc
0101h	1		
0102h	CAN0 Message Box 10: Identifier / DLC		
0103h	CANO Message Box 10. Identifier / BEC		
0104h			
0105h			
0106h			
0107h			
0108h 0109h			
0103h	CAN0 Message Box 10: Data Field		
010Bh			
010Ch			
010Dh			
010Eh	CAN0 Message Box 10: Time Stamp		
010Fh	OANO Message Box 10. Time stamp		
0110h			
0111h			
0112h 0113h	CAN0 Message Box 11: Identifier / DLC		
0114h			
0115h			
0116h			
0117h			
0118h			
0119h	CAN0 Message Box 11: Data Field		
011Ah			
011Bh 011Ch			
011Dh			
011Eh			
011Fh	CAN0 Message Box 11: Time Stamp		220
0120h			221
0121h			
0122h	CAN0 Message Box 12: Identifier / DLC		
0123h			
0124h 0125h			
0126h			
0127h			
0128h			
0129h	CAN0 Message Box 12: Data Field		
012Ah	CANO Message Box 12. Data Field		
012Bh			
012Ch			
012Dh 012Eh			
012EII	CAN0 Message Box 12: Time Stamp		
0130h			
0131h			
0132h	CAN0 Message Box 13: Identifier / DLC		
0133h	OANO Message DOX 13. Identifier / DEC		
0134h			
0135h			
0136h 0137h			
013711 0138h			
0139h			
013Ah	CAN0 Message Box 13: Data Field		
013Bh			
013Ch			
013Dh			
013Eh	CAN0 Message Box 13: Time Stamp		
013Fh			

Address	Register	Symbol	Page
0140h	-		
0141h			
0142h	CAN0 Message Box 14: Identifier /DLC		
0143h	Of the Micosage Box 14. Identifier /BEO		
0144h			
0145h			
0146h			
0147h			
0148h			
0149h 014Ah	CAN0 Message Box 14: Data Field		
014Bh 014Ch			
014Ch			
014Eh			1
014Fh	CAN0 Message Box 14: Time Stamp		220
0150h			221
0151h			
0152h	CANOMASSAS BAS 45 11 117 751 C		
0153h	CAN0 Message Box 15: Identifier /DLC		
0154h			
0155h]
0156h]
0157h			
0158h			
0159h	CAN0 Message Box 15: Data Field		
015Ah	OANO Message Box 13. Data Field		
015Bh			
015Ch			
015Dh			
015Eh	CAN0 Message Box 15: Time Stamp		
015Fh 0160h			
0161h			
0162h			
0163h	CAN0 Global Mask Register	C0GMR	222
0164h			
0165h			
0166h			
0167h			
0168h	CANOL and Mark A Denister	COLMAD	000
0169h	CAN0 Local Mask A Register	C0LMAR	222
016Ah			
016Bh			
016Ch			
016Dh			
016Eh	CAN0 Local Mask B Register	C0LMBR	222
016Fh			-
0170h 0171h			
0171h			\vdash
0172h			-
0173h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah			
017Bh			
017Ch			
017Dh			
017Eh			
017Fh			

Address	Register	Symbol	Page
0180h	- 0	- /	- 3-
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah 018Bh			
018Ch			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh 019Eh			
019En			
01A0h			
01A0h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh 01B0h			
01B0h			
01B111			
01B3h			
01B4h			
01B5h	Flash Memory Control Register 1	FMR1	262
01B6h	, , , , , , , , , , , , , , , , , , ,		
01B7h	Flash Memory Control Register 0	FMR0	262
01B8h			
01B9h	Address Match Interrupt Register 2	RMAD2	95
01BAh			
01BBh	Address Match Interrupt Enable Register 2	AIER2	95
01BCh			
01BDh	Address Match Interrupt Register 3	RMAD3	95
01BEh			
01BFh			

Address	Pogistor	Symbol	Dago
01C0h	Register	Symbol TBSR	Page 127
01C0h	Timer B3, B4, B5 Count Start Flag	וטטח	121
01C1h			
01C2h	Timer A1-1 Register	TA11	138
0.00	<u> </u>		
01C4h	Timer A2-1 Register	TA21	138
01C5h	3		
01C6h	Timer A4-1 Register	TA41	138
01C7h	¥		
01C8h	Three-Phase PWM Control Register 0	INVC0	135
01C9h	Three-Phase PWM Control Register 1	INVC1	136
01CAh	Three-Phase Output Buffer Register 0	IDB0	137
01CBh	Three-Phase Output Buffer Register 1	IDB1	137
01CCh	Dead Time Timer	DTT	137
01CDh	Timer B2 Interrupt Occurrence Frequency Set Counter	ICTB2	139
01CEh			
01CFh	Interrupt Cause Select Register 2	IFSR2	92
01D0h	Time at DO De cietas	TDO	100
01D1h	Timer B3 Register	TB3	136
01D2h			
01D3h	Timer B4 Register	TB4	126
01D4h			
01D5h	Timer B5 Register	TB5	126
01D6h	SI/O6 Transmit/Receive Register	S6TRR	192
01D0h	3/00 Transmit/Heceive Hegister	3011111	132
01D711	CI/O6 Cantral Degister	000	100
	SI/O6 Control Register SI/O6 Bit Rate Generator	S6C S6BRG	192 192
01D9h			
01DAh	3	S3456TRR	193
01DBh	Timer B3 Mode Register	TB3MR	126 128
	3	TB4MR	129
01DDh	Timer B5 Mode Register	TB5MR	131
01DEh	Interrupt Cause Select Register 0	IFSR0	90
01DFh	Interrupt Cause Select Register 1	IFSR1	91
01E0h	SI/O3 Transmit/Receive Register	S3TRR	192
01E1h			
01E2h	SI/O3 Control Register	S3C	192
01E3h	SI/O3 Bit Rate Generator	S3BRG	192
01E4h	SI/O4 Transmit/Receive Register	S4TRR	192
01E5h	•		
01E6h	SI/O4 Control Register	S4C	192
01E7h	SI/O4 Bit Rate Generator	S4BRG	192
01E8h	SI/O5 Transmit/Receive Register	S5TRR	192
01E9h			
	SI/O5 Control Register	S5C	192
01EBh		S5BRG	192
01ECh	UARTO Special Mode Register 4	U0SMR4	153
01EDh		U0SMR3	152
01EEh	UARTO Special Mode Register 2	U0SMR2	152
01EFh	UARTO Special Mode Register	U0SMR	151
01F0h		U1SMR4	
01F1h	UART1 Special Mode Register 4 UART1 Special Mode Register 3		153
01F1II		U1SMR3	152
	UART1 Special Mode Register 2	U1SMR2	152
01F3h	UART1 Special Mode Register	U1SMR	151
01F4h	UART2 Special Mode Register 4	U2SMR4	153
01F5h	UART2 Special Mode Register 3	U2SMR3	152
01F6h	UART2 Special Mode Register 2	U2SMR2	152
01F7h	UART2 Special Mode Register	U2SMR	151
01F8h	UART2 Transmit/Receive Mode Register	U2MR	149
01F9h	UART2 Bit Rate Generator	U2BRG	148
01FAh	UART2 Transmit Buffer Register	U2TB	148
01FBh	OAITIZ Hansilii bullet negistet		140
01FCh	UART2 Transmit/Receive Control Register 0	U2C0	149
01FDh	UART2 Transmit/Receive Control Register 1	U2C1	150
01FEh			
01FFh	UART2 Receive Buffer Register	U2RB	148

Address	Register	Cumbal	Dogo
	<u> </u>	Symbol	Page
0200h	CANO Message Control Register 0	COMCTLO	
0201h	CANO Message Control Register 1	COMCTL1	
0202h	CANO Message Control Register 2	COMCTL2	
0203h	CANO Message Control Register 3	COMCTL3	
0204h	CANO Message Control Register 4	COMCTL4	
0205h	CANO Message Control Register 5	COMCTL5	
0206h	CANO Message Control Register 6	COMCTL6	
0207h	CAN0 Message Control Register 7	COMCTL7	223
0208h	CAN0 Message Control Register 8	C0MCTL8	
0209h	CAN0 Message Control Register 9	C0MCTL9	
020Ah	CAN0 Message Control Register 10	C0MCTL10	
020Bh	CAN0 Message Control Register 11	C0MCTL11	
020Ch	CAN0 Message Control Register 12	C0MCTL12	
020Dh	CAN0 Message Control Register 13	C0MCTL13	
020Eh	CAN0 Message Control Register 14	C0MCTL14	
020Fh	CAN0 Message Control Register 15	C0MCTL15	
0210h	CANO Control Degister	COCTLD	004
0211h	CAN0 Control Register	C0CTLR	224
0212h	OANO Otatas Basistas	COOTE	200
0213h	CAN0 Status Register	C0STR	226
0214h	0410 01 + 01 + 0	000070	007
0215h	CAN0 Slot Status Register	C0SSTR	227
0216h	04401	00105	0.55
0217h	CAN0 Interrupt Control Register	COICR	227
0218h			
0219h	CAN0 Extended ID Register	C0IDR	227
021Ah			
021Bh	CAN0 Configuration Register	C0CONR	228
021Ch	CAN0 Receive Error Count Register	CORECR	229
021Dh	CANO Transmit Error Count Register	COTECR	229
021Eh	CANO Transmit Error Count Negister	COTLOIT	223
021Fh	CAN0 Time Stamp Register	C0TSR	229
021FII			
0220H			
022111 0222h			
0223h			
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
0230h	CAN1 Control Register	C1CTLR	225
0231h	OANT CONTOUT TEGISTED	OTOTER	220
0232h			
0233h			
0234h			
0235h			
0236h			
0237h			
0238h			
0239h			
023Ah			
023Bh			
023Ch			
023Dh			
023Eh			
023Fh			
020111			

Address	Register	Symbol	Page
0240h			
0241h			
0242h	CANO Accortance Filter Support Pogister	C0AFS	229
0243h	CAN0 Acceptance Filter Support Register	CUAFS	229
0244h			
0245h			
0246h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Fh			
0250h			
0251h 0252h			-
0253h			
0254h			
0255h			
0256h			<u> </u>
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
	Peripheral Clock Select Register	PCLKR	56
025Fh	CAN0 Clock Select Register	CCLKR	57
0260h			
0261h			
0262h			
0263h			
0264h			
0265h			
0266h			
0267h			
0268h			
0269h			
026Ah			
026Bh			
026Ch			
026Dh			
026Eh			
026Fh			
0270h			
to			
0372h			
0373h			
0374h			
0375h			
0376h			
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch			
037Dh			
037Eh			
037Fh			

A alalua a a	Desisten	Ch al	Dana
Address 0380h	Register	Symbol TABSR	Page 112,127,140
0381h	Clock Proceeds Paget Floor	CPSRF	113,127
0382h	Clock Prescaler Reset Flag One-Shot Start Flag	ONSF	113,127
0383h	Trigger Select Register	TRGSR	113,140
0384h	Up/Down Flag	UDF	112
0385h	Op/Down Flag	ODI	112
0386h			
0387h	Timer A0 Register	TA0	111
0388h			111
0389h	Timer A1 Register	TA1	138
038Ah			111
038Bh	Timer A2 Register	TA2	138
038Ch			
038Dh	Timer A3 Register	TA3	111
038Eh			111
038Fh	Timer A4 Register	TA4	138
0390h	· ·		
0391h	Timer B0 Register	TB0	126
0392h	F		400
0393h	Timer B1 Register	TB1	126
0394h	T. DOD		126
0395h	Timer B2 Register	TB2	138
0396h	Timer A0 Mode Register	TA0MR	111
0397h	Timer A1 Mode Register	TA1MR	114 141
0398h	Timer A2 Mode Register	TA2MR	116 118,141
0399h	Timer A3 Mode Register	TA3MR	121 118
039Ah	Timer A4 Mode Register	TA4MR	123 118,141
039Bh	Timer B0 Mode Register	TB0MR	126,128
039Ch	Timer B1 Mode Register	TB1MR	129,131
039Dh	Timer B2 Mode Register	TB2MR	141
039Eh	Timer B2 Special Mode Register	TB2SC	139
039Fh			
03A0h	UART0 Transmit/Receive Mode Register	U0MR	149
03A1h	UART0 Bit Rate Generator	U0BRG	148
03A2h	UART0 Transmit Buffer Register	U0TB	148
03A3h	_		
03A4h	UART0 Transmit/Receive Control Register 0	U0C0	149
03A5h	UART0 Transmit/Receive Control Register 1	U0C1	150
03A6h	UARTO Receive Buffer Register	U0RB	148
03A7h	3		
03A8h	UART1 Transmit/Receive Mode Register	U1MR	149
03A9h	UART1 Bit Rate Generator	U1BRG	148
03AAh	UART1 Transmit Buffer Register	U1TB	148
03ABh			
03ACh	UART1 Transmit/Receive Control Register 0	U1C0	149
03ADh	UART1 Transmit/Receive Control Register 1	U1C1	150
03AEh 03AFh	UART1 Receive Buffer Register	U1RB	148
	UART Transmit/Receive Control Register 2	UCON	151
03B0h 03B1h	Oniti Hansinik neceive Control negister 2	OCON	151
03B2h			
03B3h			
03B3h			
03B5h			
03B6h			
03B7h			
03B8h	DMA0 Request Cause Select Register	DM0SL	100
03B9h		J.1.100L	.50
03BAh	DMA1 Request Cause Select Register	DM1SL	101
03BBh		JOL	
03BCh			
03BDh	CRC Data Register	CRCD	216
03BEh	CRC Input Register	CRCIN	216
03BFh			

Address	Register	Symbol	Page
03C0h			3-
03C1h	A/D Register 0	AD0	
03C2h	A/D Register 1	AD1	
03C3h	TOGISTO I	1	
03C4h	A/D Register 2	AD2	
03C5h 03C6h	-		
03C7h	A/D Register 3	AD3	000
03C8h		104	200
03C9h	A/D Register 4	AD4	
03CAh	A/D Register 5	AD5	
03CBh	A/D negister 5	700	
03CCh	A/D Register 6	AD6	
03CDh 03CEh	-9	1	
03CEn	A/D Register 7	AD7	
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	200
03D5h	A/D Combinal District C	ADOCHIC	100 000 004
	A/D Control Register 0	ADCON1	199,202,204
03D7h 03D8h	A/D Control Register 1 D/A Register 0	ADCON1 DA0	206,208,210 215
03D9h	DIA Hegistel U	טאט	210
	D/A Register 1	DA1	215
03DBh	-		-
	D/A Control Register	DACON	215
03DDh			
	Port P14 Control Register	PC14	251
	Pull-Up Control Register 3	PUR3	253
03E0h 03E1h	Port P0 Register Port P1 Register	P0 P1	251 251
03E1II		PD0	250
03E3h		PD1	250
03E4h		P2	251
03E5h	Port P3 Register	P3	251
	Port P2 Direction Register	PD2	250
03E7h		PD3	250
03E8h		P4	251
	Port P5 Register Port P4 Direction Register	P5 PD4	251 250
	Port P5 Direction Register	PD5	250
	Port P6 Register	P6	251
03EDh	Port P7 Register	P7	251
03EEh	Port P6 Direction Register	PD6	250
	Port P7 Direction Register	PD7	250
03F0h	Port P8 Register	P8	251
03F1h	Port P9 Register	P9	251
03F2h	Port P8 Direction Register	PD8	250
03F3h 03F4h	Port P9 Direction Register Port P10 Register	PD9 P10	250 251
03F5h	Port P11 Register	P11	251
03F6h	Port P10 Direction Register	PD10	250
03F7h	Port P11 Direction Register	PD11	250
03F8h	Port P12 Register	P12	251
03F9h	Port P13 Register	P13	251
03FAh	Port P12 Direction Register	PD12	250
03FBh	Port P13 Direction Register	PD13	250
03FCh	Pull-up Control Register 0 Pull-up Control Register 1	PUR0	252
	Pull-up Control Register 2	PUR1 PUR2	252 252
03FFh	Port Control Register	PCR	253
00. 1 11		1 011	200

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Rev.2.00 Nov 28, 2005

1. Overview

The M16C/6N Group (M16C/6NL, M16C/6NN) of single-chip microcomputers are built using the high-performance silicon gate CMOS process using an M16C/60 Series CPU core and are packaged in 100-pin and 128-pin plastic molded LQFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. Being equipped with one CAN (Controller Area Network) module in M16C/6N Group (M16C/6NL, M16C/6NN), the microcomputer is suited to car audio and industrial control systems. The CAN module complies with the 2.0B specification. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA and communication equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

Car audio and industrial control systems, other

1.2 Performance Outline

Tables 1.1 and 1.2 list a performance outline of M16C/6N Group (M16C/6NL, M16C/6NN).

Table 1.1 Performance Outline of M16C/6N Group (100-pin Version: M16C/6NL)

Item			Performance		
CPU Number of Basic Instructions 9		c Instructions	91 instructions		
	Minimum Instruction	n Execution Time	41.7ns (f(BCLK) = 24MHz, 1/1 prescaler, without software wait)		
	Operation Mod	le	Single-chip, memory expansion and microprocessor modes		
	Address Space	Э	1 Mbyte		
	Memory Capac	city	See Table 1.3 Product List		
Peripheral	Port		Input/Output: 87 pins, Input: 1 pin		
Function	Multifunction Ti	mer	Timer A: 16 bits X 5 channels		
			Timer B: 16 bits × 6 channels		
			Three-phase motor control circuit		
	Serial Interface	9	3 channels		
			Clock synchronous, UART, I ² C-bus (1), IEBus (2)		
			2 channels		
			Clock synchronous		
	A/D Converter		10-bit A/D converter: 1 circuit, 26 channels		
	D/A Converter		8 bits X 2 channels		
	DMAC		2 channels		
	CRC Calculation Circuit		CRC-CCITT		
	CAN Module		1 channel with 2.0B specification		
	Watchdog Tim	er	15 bits X 1 channel (with prescaler)		
	·		Internal: 30 sources, External: 9 sources		
			Software: 4 sources, Priority level: 7 levels		
	Clock Generat	ing Circuit	4 circuits		
			Main clock oscillation circuit (*)		
			Sub clock oscillation circuit (*)		
			On-chip oscillator		
			PLL frequency synthesizer		
			(*) Equipped with a built-in feedback resistor		
	Oscillation Stop	Detection	Main clock oscillation stop and re-oscillation detection function		
	Function				
Electrical	Supply Voltage	9	VCC = 3.0 to 5.5V		
Characteristics			(f(BCLK) = 24MHz, 1/1 prescaler, without software wait)		
	Power		19mA (f(BCLK) = 24MHz, PLL operation, no division)		
	Consumption		21mA (f(BCLK) = 24MHz, PLL operation, no division)		
		Mask ROM	3μA (f(BCLK) = 32kHz, Wait mode, Oscillation capacity Low)		
E	D /F		0.8μA (Stop mode, Topr = 25°C)		
Flash Memory	0 117				
Version	Program and Erase Endurance				
I/O	I/O Withstand Voltage		5.0V		
	Characteristics Output Current		5mA		
	bient Tempera	ture	-40 to 85°C		
Device Config	guration		CMOS high performance silicon gate		
Package			100-pin plastic mold LQFP		

- 1. I²C-bus is a registered trademark of Koninklijke Philips Electronics N.V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.

	Itom		Parformance		
ODLI	Item	a la atau - P	Performance		
CPU	Number of Basi				
			41.7ns (f(BCLK) = 24MHz, 1/1 prescaler, without software wait)		
	Operation Mod		Single-chip, memory expansion and microprocessor modes		
	Address Space		1 Mbyte		
	Memory Capac	city	See Table 1.3 Product List		
Peripheral	Port		Input/Output: 113 pins, Input: 1 pin		
Function	Multifunction Ti	mer	Timer A: 16 bits × 5 channels		
			Timer B: 16 bits × 6 channels		
			Three-phase motor control circuit		
	Serial Interface	9	3 channels		
			Clock synchronous, UART, I ² C-bus ⁽¹⁾ , IEBus ⁽²⁾		
			4 channels		
			Clock synchronous		
	A/D Converter		10-bit A/D converter: 1 circuit, 26 channels		
	D/A Converter		8 bits X 2 channels		
	DMAC		2 channels		
	CRC Calculation	on Circuit	CRC-CCITT		
	CAN Module		1 channel with 2.0B specification		
	Watchdog Timer		15 bits X 1 channel (with prescaler)		
	Interrupt		Internal: 32 sources, External: 12 sources		
			Software: 4 sources, Priority level: 7 levels		
	Clock Generating Circuit		4 circuits		
			Main clock oscillation circuit (*)		
			Sub clock oscillation circuit (*)		
			On-chip oscillator		
			PLL frequency synthesizer		
			(*) Equipped with a built-in feedback resistor		
	Oscillation Stop	Detection	Main clock oscillation stop and re-oscillation detection function		
	Function				
Electrical	Supply Voltage	9	VCC = 3.0 to 5.5V		
Characteristics			(f(BCLK) = 24MHz, 1/1 prescaler, without software wait)		
	Power	Mask ROM	19mA (f(BCLK) = 24MHz, PLL operation, no division)		
	Consumption	Flash Memory	21mA (f(BCLK) = 24MHz, PLL operation, no division)		
		Mask ROM	3μA (f(BCLK) = 32kHz, Wait mode, Oscillation capacity Low)		
		Flash Memory	0.8μA (Stop mode, Topr = 25°C)		
Flash Memory	Program/Erase Supply Voltage		3.3 ± 0.3V or 5.0 ± 0.5V		
Version	Program and Erase Endurance		100 times		
I/O	I/O Withstand Voltage		5.0V		
Characteristics	Characteristics Output Current		5mA		
Operating Am	bient Tempera	ture	-40 to 85°C		
Device Config	guration		CMOS high performance silicon gate		
Package			128-pin plastic mold LQFP		

- 1. I²C-bus is a registered trademark of Koninklijke Philips Electronics N.V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.

1.3 Block Diagram

Figure 1.1 shows a block diagram of M16C/6N Group (M16C/6NL, M16C/6NN).

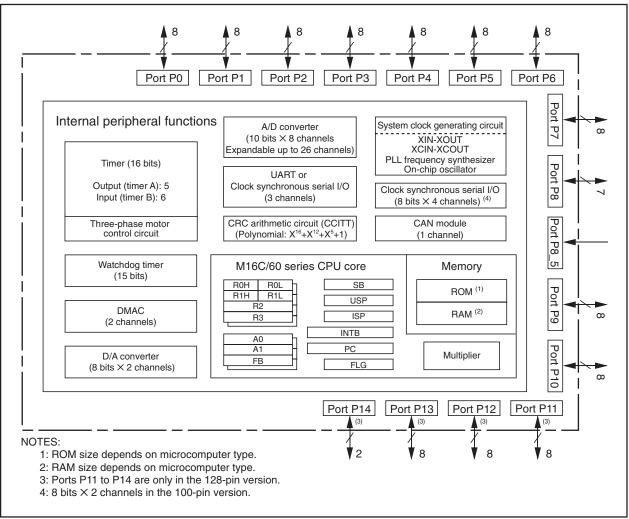


Figure 1.1 Block Diagram

1.4 Product List

Table 1.3 lists the M16C/6N Group (M16C/6NL, M16C/6NN) products and Figure 1.2 shows the type numbers, memory sizes and packages.

Table 1.3 Product List

As of Nov. 2005

Type No.		ROM Capacity	RAM Capacity	Package Type	Remarks
M306NLFHGP	3	384 K + 4 Kbytes	31 Kbytes	PLQP0100KB-A	Flash memory
M306NNFHGP				PLQP0128KB-A	version ⁽¹⁾
M306NLFJGP (D) 5	512 K + 4 Kbytes	31 Kbytes	PLQP0100KB-A	
M306NNFJGP				PLQP0128KB-A	
M306NLME-XXXGP	1	192 Kbytes	16 Kbytes	PLQP0100KB-A	Mask ROM version
M306NNME-XXXGP				PLQP0128KB-A	
M306NLMG-XXXGP	2	256 Kbytes	20 Kbytes	PLQP0100KB-A	
M306NNMG-XXXGP				PLQP0128KB-A	

(D): Under development

NOTE:

1. In the flash memory version, there is 4-Kbyte space (block A).

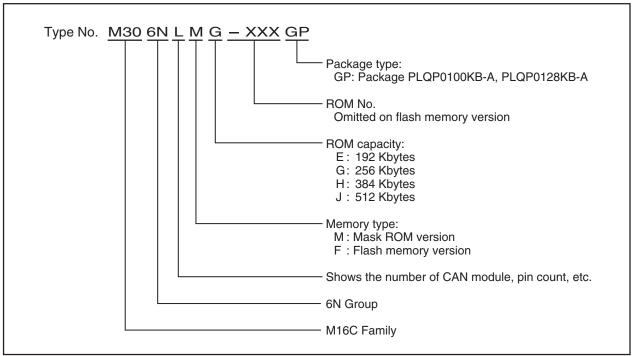


Figure 1.2 Type No., Memory Size, and Package

1.5 Pin Configuration

Figures 1.3 and 1.4 show the pin configuration (top view). Tables 1.4 to 1.8 list the pin characteristics.

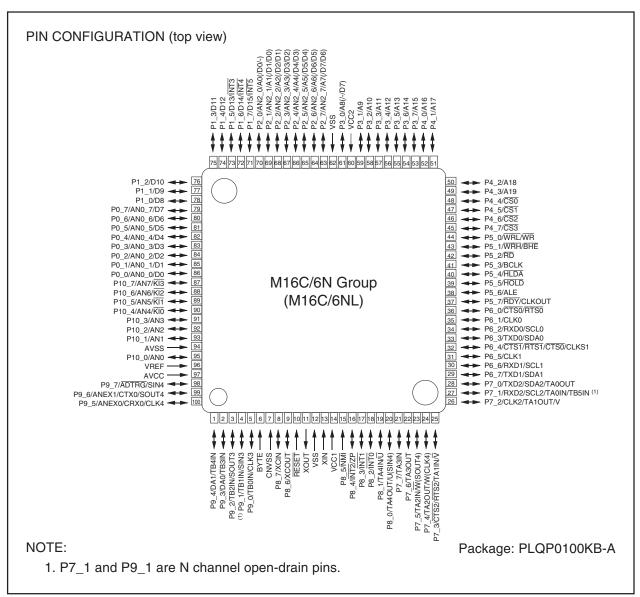


Figure 1.3 Pin Configuration (Top View) (1)

Table 1.4 Pin Characteristics for 100-Pin Package (1)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pi
1		P9_4		TB4IN		DA1		
2		P9_3		TB3IN		DA0		
3		P9_2		TB2IN	SOUT3			
4		P9_1		TB1IN	SIN3			
5		P9_0		TB0IN	CLK3			
6	BYTE							
7	CNVSS							
8	XCIN	P8_7						
9	XCOUT	P8_6						
10	RESET							
11	XOUT							
12	VSS							
13	XIN							
14	VCC1							
15		P8_5	NMI					
16		P8_4	INT2	ZP				
17		P8_3	INT1					
18		P8_2	INT0					
19		P8_1		TA4IN/U				
20		P8_0		TA4OUT/U	(SIN4)			
21		P7_7		TA3IN	,			
22		P7_6		TA3OUT				
23		P7_5		TA2IN/W	(SOUT4)			
24		P7_4		TA2OUT/W	(CLK4)			
25		P7_3		TA1IN/V	CTS2/RTS2			
26		P7_2		TA1OUT/V	CLK2			
27		P7_1		TA0IN/TB5IN	RXD2/SCL2			
28		P7_0		TA0OUT	TXD2/SDA2			
29		P6_7			TXD1/SDA1			
30		P6_6			RXD1/SCL1			
31		P6_5			CLK1			
32		P6_4			CTS1/RTS1/CTS0/CLKS1			
33		P6_3			TXD0/SDA0			
34		P6_2			RXD0/SCL0			
35		P6_1			CLK0			
36		P6_0			CTS0/RTS0			
37		P5_7						RDY/CLKOUT
38		P5_6						ALE
39		P5_5						HOLD
40		P5_4						HLDA
41		P5_3						BCLK
42		P5_2						RD
43		P5_1						WRH/BHE
44		P5_0						WRL/WR
45		P4_7						CS3
46		P4_6						CS2
47		P4_5						CS1
48		P4_4						CS0
49		P4_3						A19
50		P4_3						A18

Table 1.5 Pin Characteristics for 100-Pin Package (2)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pir
51		P4_1						A17
52		P4_0						A16
53		P3_7						A15
54		P3_6						A14
55		P3_5						A13
56		P3_4						A12
57		P3_3						A11
58		P3_2						A10
59		P3_1						A9
60	VCC2							
61		P3_0						A8(/-/D7)
62	vss							
63		P2_7				AN2_7		A7(/D7/D6)
64		P2_6				AN2_6		A6(/D6/D5)
65		P2_5				AN2_5		A5(/D5/D4)
66		P2_4				AN2_4		A4(/D4/D3)
67		P2_3				AN2_3		A3(/D3/D2)
68		P2_2				AN2_2		A2(/D2/D1)
69		P2_1				AN2_1		A1(/D1/D0)
70		P2_0				AN2_0		A0(/D0/-)
71		P1_7	INT5					D15
72		P1_6	INT4					D14
73		P1_5	INT3					D13
74		P1_4						D12
75		P1_3						D11
76		P1_2						D10
77		P1_1						D9
78		P1_0						D8
79		P0_7				AN0_7		D7
80		P0_6				AN0_6		D6
81		P0_5				AN0_5		D5
82		P0_4				AN0_4		D4
83		P0_3				AN0_3		D3
84		P0_2				AN0_2		D2
85		P0_1				AN0_1		D1
86		P0_0				AN0_0		D0
87		P10_7	KI3			AN7		
88		P10_6	KI2			AN6		
89		P10_5	KI1			AN5		
90		P10_4	KI0			AN4		
91		P10_3				AN3		
92		P10_2				AN2		
93		P10_1				AN1		
94	AVSS	_						
95		P10_0				AN0		
96	VREF							
97	AVCC							
98		P9_7			SIN4	ADTRG	-	
99		P9_6			SOUT4	ANEX1	CTX0	
100		P9_5			CLK4	ANEX0	CRX0	

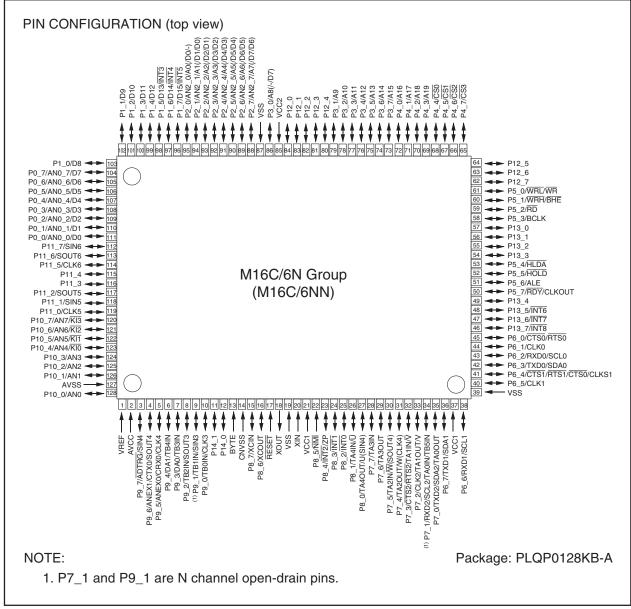


Figure 1.4 Pin Configuration (Top View) (2)

Table 1.6 Pin Characteristics for 128-Pin Package (1)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pin
1	VREF							
2	AVCC							
3		P9_7			SIN4	ADTRG		
4		P9_6			SOUT4	ANEX1	CTX0	
5		P9_5			CLK4	ANEX0	CRX0	
6		P9_4		TB4IN		DA1		
7		P9_3		TB3IN		DA0		
8		P9_2		TB2IN	SOUT3			
9		P9_1		TB1IN	SIN3			
10		P9_0		TB0IN	CLK3			
11		P14_1						
12		P14_0						
13	BYTE							
14	CNVSS							
15	XCIN	P8_7						
16	XCOUT	P8_6						
17	RESET	_						
18	XOUT							
19	vss							
20	XIN							
21	VCC1							
22		P8_5	NMI					
23		P8_4	INT2	ZP				
24		P8_3	INT1					
25		P8_2	INT0					
26		P8_1		TA4IN/U				
27		P8_0		TA4OUT/U	(SIN4)			
28		P7_7		TA3IN	(=:::)			
29		P7_6		TA3OUT				
30		P7_5		TA2IN/W	(SOUT4)			
31		P7_4		TA2OUT/W	(CLK4)			
32		P7_3		TA1IN/V	CTS2/RTS2			
33		P7_2		TA1OUT/V	CLK2			
34		P7_1		TA0IN/TB5IN	RXD2/SCL2			
35		P7_0		TA0OUT	TXD2/SDA2			
36		P6_7		17.0001	TXD1/SDA1			
37	VCC1	,						
38		P6_6			RXD1/SCL1			
39	VSS							
40		P6_5			CLK1			
41		P6_4			CTS1/RTS1/CTS0/CLKS1			
42		P6_3			TXD0/SDA0			
43		P6_2			RXD0/SCL0			
44		P6_1			CLK0			
45		P6_0			CTS0/RTS0		-	
46		P13_7	INT8		0100/11100			
47		P13_7	INT7					
		P13_6	INT6					
48		P13_5 P13_4	пито					
49				i .		1		t contract to the contract to

Table 1.7 Pin Characteristics for 128-Pin Package (2)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pi
51		P5_6						ALE
52		P5_5						HOLD
53		P5_4						HLDA
54		P13_3						
55		P13_2						
56		P13_1						
57		P13_0						
58		P5_3						BCLK
59		P5_2						RD
60		P5_1						WRH/BHE
61		P5_0						WRL/WR
62		P12_7						
63		P12_6						
64		P12_5						
65		P4_7						CS3
66		P4_6						CS2
67		P4_5						CS1
68		P4_4						CS0
69		P4_3						A19
70		P4_2						A18
71		P4_1						A17
72		P4_0						A16
73		P3_7						A15
74		P3_6						A14
75		P3_5						A13
76		P3_4						A12
77		P3_3						A11
78		P3_2						A10
79		P3_1						A9
80		P12_4						
81		P12_3						
82		P12_2						
83		P12_1						
84		P12_0						
85	VCC2							
86		P3_0						A8(/-/D7)
87	vss	_						,
88		P2_7				AN2_7		A7(/D7/D6)
89		P2_6				AN2_6		A6(/D6/D5)
90		P2_5				AN2_5		A5(/D5/D4)
91		P2_4				AN2_4		A4(/D4/D3)
92		P2_3				AN2_3		A3(/D3/D2)
93		P2_2				AN2_2		A2(/D2/D1)
94		P2_1				AN2_1		A1(/D1/D0)
95		P2_0				AN2_0		A0(/D0/-)
96		P1_7	INT5					D15
97		P1_6	INT4					D14
98		P1_5	INT3					D13
99		P1_4						D12
100		P1_3						D11

Table 1.8 Pin Characteristics for 128-Pin Package (3)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pin
101		P1_2						D10
102		P1_1						D9
103		P1_0						D8
104		P0_7				AN0_7		D7
105		P0_6				AN0_6		D6
106		P0_5				AN0_5		D5
107		P0_4				AN0_4		D4
108		P0_3				AN0_3		D3
109		P0_2				AN0_2		D2
110		P0_1				AN0_1		D1
111		P0_0				AN0_0		D0
112		P11_7			SIN6			
113		P11_6			SOUT6			
114		P11_5			CLK6			
115		P11_4						
116		P11_3						
117		P11_2			SOUT5			
118		P11_1			SIN5			
119		P11_0			CLK5			
120		P10_7	KI3			AN7		
121		P10_6	KI2			AN6		
122		P10_5	KI1			AN5		
123		P10_4	KI0			AN4		
124		P10_3				AN3		
125		P10_2				AN2		
126		P10_1				AN1		
127	AVSS							
128		P10_0				AN0		

1.6 Pin Description

Tables 1.9 to 1.11 list the pin descriptions.

Table 1.9 Pin Description (100-pin and 128-pin Versions) (1)

Signal Name	Pin Name	I/O Type	
Power supply	VCC1, VCC2,	I	Apply 3.0 to 5.5V to the VCC1 and VCC2 pins and 0V to the VSS
input	VSS		pin. The VCC apply condition is that VCC2 = VCC1 (1).
Analog power	AVCC, AVSS	I	Applies the power supply for the A/D converter. Connect the AVCC
supply input			pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	I	Switches processor mode. Connect this pin to VSS to when after
			a reset to start up in single-chip mode. Connect this pin to VCC1
			to start up in microprocessor mode.
External data	BYTE	I	Switches the data bus in external memory space. The data bus
bus width			is 16-bit long when the this pin is held "L" and 8-bit long when
select input			the this pin is held "H". Set it to either one. Connect this pin to
			VSS when an single-chip mode.
Bus control	D0 to D7	I/O	Inputs and outputs data (D0 to D7) when these pins are set as
pins			the separate bus.
	D8 to D15	I/O	Inputs and outputs data (D8 to D15) when external 16-bit data
			bus is set as the separate bus.
	A0 to A19	0	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	Input and output data (D0 to D7) and output address bits (A0 to
			A7) by time-sharing when external 8-bit data bus are set as the
			multiplexed bus.
	A1/D0 to A8/D7	I/O	Input and output data (D0 to D7) and output address bits (A1 to
			A8) by time-sharing when external 16-bit data bus are set as the
			multiplexed bus.
	CS0 to CS3	0	Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals
			to specify an external space.
	WRL/WR	0	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or
	WRH/BHE		BHE and WR can be switched by program.
	RD		• WRL, WRH and RD are selected
			The WRL signal becomes "L" by writing data to an even address
			in an external memory space.
			The WRH signal becomes "L" by writing data to an odd address
			in an external memory space.
			The RD pin signal becomes "L" by reading data in an external
			memory space.
			• WR, BHE and RD are selected
			The WR signal becomes "L" by writing data in an external
			memory space.
			The RD signal becomes "L" by reading data in an external
			memory space.
			The BHE signal becomes "L" by accessing an odd address.
			Select WR, BHE and RD for an external 8-bit data bus.
	ALE	0	ALE is a signal to latch the address.
	HOLD	I	While the HOLD pin is held "L", the microcomputer is placed in a
	HLDA	0	hold state. In a hold state, HLDA outputs a "L" signal.
	RDY	ı	While applying a "L" signal to the RDY pin, the microcomputer is
	וטחו	'	placed in a wait state.
			piacea in a wait state.

I: Input

O: Output

I/O: Input/Output

NOTE:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

Table 1.10 Pin Description (100-pin and 128-pin Versions) (2)

Signal Name	Pin Name	I/O Type	Description
Main clock	XIN	ı	I/O pins for the main clock oscillation circuit. Connect a ceramic
input			resonator or crystal oscillator between XIN and XOUT (1).
Main clock	XOUT	0	To use the external clock, input the clock from XIN and leave
output			XOUT open.
Sub clock	XCIN	I	I/O pins for a sub clock oscillation circuit. Connect a crystal
input			oscillator between XCIN and XCOUT (1).
Sub clock	XCOUT	0	To use the external clock, input the clock from XCIN and leave
output			XCOUT open.
BCLK output	BCLK	0	Outputs the BCLK signal.
Clock output	CLKOUT	0	The clock of the same cycle as fC, f8, or f32 is output.
INT interrupt input	NT0 to INT8 (3)	I	Input pins for the INT interrupt.
NMI interrupt	NMI	I	Input pin for the NMI interrupt.
input			
Key input	KI0 to KI3	I	Input pins for the key input interrupt.
interrupt input			
Timer A	TA0OUT to TA4OUT	I/O	These are timer A0 to timer A4 I/O pins.
	TA0IN to TA4IN	I	These are timer A0 to timer A4 input pins.
	ZP	I	Input pin for the Z-phase.
Timer B	TB0IN to TB5IN	I	These are timer B0 to timer B5 input pins.
Three-phase motor	$U, \overline{U}, V, \overline{V}, W, \overline{W}$	0	These are Three-phase motor control output pins.
control output			
Serial interface	CTS0 to CTS2	I	These are send control input pins.
	RTS0 to RTS2	0	These are receive control output pins.
	CLK0 to CLK6 (3)	I/O	These are transfer clock I/O pins.
	RXD0 to RXD2	I	These are serial data input pins.
	SIN3 to SIN6 (3)	I	These are serial data input pins.
	TXD0 to TXD2	0	These are serial data output pins.
	SOUT3 to SOUT6 (3)	0	These are serial data output pins.
	CLKS1	0	This is output pin for transfer clock output from multiple pins
			function.
I ² C mode	SDA0 to SDA2	I/O	These are serial data I/O pins.
	SCL0 to SCL2	I/O	These are transfer clock I/O pins. (however, SCL2 for the
			N-channel open drain output.)
Reference	VREF	I	Applies the reference voltage for the A/D converter and D/A
voltage input			converter.
A/D converter	AN0 to AN7	I	Analog input pins for the A/D converter.
	AN0_0 to AN0_7		
	AN2_0 to AN2_7		
	ADTRG	I	This is an A/D trigger input pin.
	ANEX0	I/O	This is the extended analog input pin for the A/D converter,
			and is the output in external op-amp connection mode.
	ANEX1	I	This is the extended analog input pin for the A/D converter.
D/A converter	DA0, DA1	0	These are the output pins for the D/A converter.
CAN module	CRX0	I	This is the input pins for the CAN module.
	CTX0	0	This is the output pins for the CAN module.

I: Input

O: Output

I/O: Input/Output

- 1. Ask the oscillator maker the oscillation characteristic.
- 2. INT6 to INT8, CLK5, CLK6, SIN5, SIN6, SOUT5, SOUT6 are only in the 128-pin version.

Table 1.11 Pin Description (100-pin and 128-pin Versions) (3)

Signal Name	Pin Name	I/O Type	Description
I/O port	P0_0 to P0_7	I/O	8-bit I/O ports in CMOS, having a direction register to select
	P1_0 to P1_7		an input or output.
	P2_0 to P2_7		Each pin is set as an input port or output port. An input port
	P3_0 to P3_7		can be set for a pull-up or for no pull-up in 4-bit unit by
	P4_0 to P4_7		program.
	P5_0 to P5_7		(however P7_1 and P9_1 for the N-channel open drain
	P6_0 to P6_7		output.)
	P7_0 to P7_7		
	P8_0 to P8_4		
	P8_6, P8_7		
	P9_0 to P9_7		
	P10_0 to P10_7		
	P11_0 to P11_7 (1)		
	P12_0 to P12_7 (1)		
	P13_0 to P13_7 (1)		
	P14_0, P14_1 (1)		
Input port	P8_5	I	Input pin for the NMI interrupt.
			Pin states can be read by the P8_5 bit in the P8 register.

I: Input

O: Output

I/O: Input/Output

NOTE:

1. Ports P11 to P14 are only in the 128-pin version.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

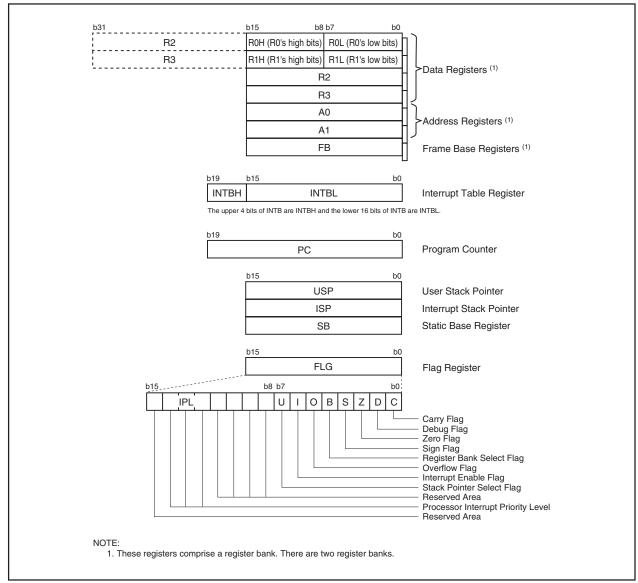


Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The A0 register consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and arithmetic/logic operations. A1 is the same as A0.

In some instructions, A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

This flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is set to "0" when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1".

The U flag is set to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt request is enabled.

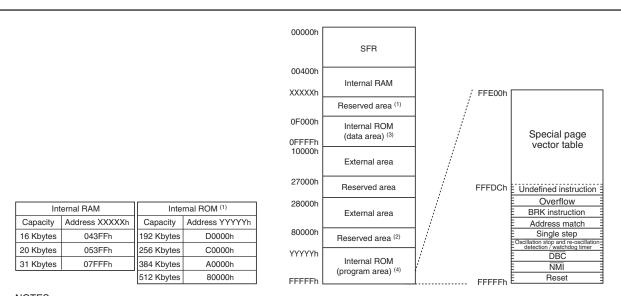
2.8.10 Reserved Area

When white to this bit, write "0". When read, its content is indeterminate.

3. Memory

Figure 3.1 shows a memory map of the M16C/6N Group (M16C/6NL, M16C/6NN). The address space extends the 1 Mbyte from address 00000h to FFFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFh. For example, a 512-Kbyte internal ROM is allocated to the addresses from 80000h to FFFFFh.


As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 31-Kbyte internal RAM is allocated to the addresses from 00400h to 07FFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to **M16C/60**, **M16C/20**, **M16C/Tiny Series Software Manual**. In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

- During memory expansion mode or microprocessor mode, cannot be used.
- 2. In memory expansion mode, cannot be used.
- 3. As for the flash memory version, 4-Kbyte space (block A) exists.
- 4. When using the masked ROM version, write nothing to internal ROM area.
- 5. Shown here is a memory map for the case where the PM10 bit in the PM1 register is "1" (block A enabled, addresses 10000h to 26FFFh for CS2 area) and the PM13 bit in the PM1 register is "1" (internal RAM area is expanded over 192 Kbytes).

Figure 3.1 Memory Map

4. Special Function Register (SFR)

SFR (Special Function Register) is the control register of peripheral functions.

Tables 4.1 to 4.12 list the SFR information.

Table 4.1 SFR Information (1)

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0 (1)	PM0	00000000b (CNVSS pin is "L") 00000011b (CNVSS pin is "H")
0005h	Processor Mode Register 1	PM1	00001000b
0006h	System Clock Control Register 0	CM0	01001000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h	Chip Select Control Register	CSR	0000001b
0009h	Address Match Interrupt Enable Register	AIER	XXXXXX00b
000Ah	Protect Register	PRCR	XX000000b
000Bh			
000Ch	Oscillation Stop Detection Register (2)	CM2	0X000000b
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00XXXXXb
0010h			00h
0011h	Address Match Interrupt Register 0	RMAD0	00h
0012h			X0h
0013h			004
0014h	Address Match Interrupt Register 1	DMAD4	00h
0015h 0016h	Address Match Interrupt Register 1	RMAD1	00h
0016h 0017h			X0h
0017h 0018h			
0018h			
0019II			
001An	Chip Select Expansion Control Register	CSE	00h
001Dh	PLL Control Register 0	PLC0	0001X010b
001Dh	P LL Control Negister 0	FLOO	000170100
001Eh	Processor Mode Register 2	PM2	XXX00000b
001En	1 10003301 Wiode Hegister 2	1 1412	жжени
0020h			XXh
0021h	DMA0 Source Pointer	SAR0	XXh
0022h		0,0	XXh
0023h			70.11
0024h			XXh
0025h	DMA0 Destination Pointer	DAR0	XXh
0026h			XXh
0027h			
0028h	DMAG Transfer Country	TODO	XXh
0029h	DMA0 Transfer Counter	TCR0	XXh
002Ah			
002Bh			
002Ch	DMA0 Control Register	DM0CON	0000X00b
002Dh			
002Eh			
002Fh			
0030h			XXh
0031h	DMA1 Source Pointer	SAR1	XXh
0032h			XXh
0033h			
0034h			XXh
0035h	DMA1 Destination Pointer	DAR1	XXh
0036h			XXh
0037h			V0.0
0038h	DMA1 Transfer Counter	TCR1	XXh
0039h			XXh
003Ah			
003Bh	DMA1 Central Pagister	DM4CON	00000
003Ch	DMA1 Control Register	DM1CON	00000X00b
003Dh 003Eh			
003Fh			

X: Undefined

- 1. The PM00 and PM01 bits in the PM0 register do not change at software reset, watchdog timer reset and oscillation stop detection reset.
- 2. The CM20, CM21, and CM27 bits in the CM2 register do not change at oscillation stop detection reset.
- 3. The blank areas are reserved and cannot be accessed by users.

Table 4.2 SFR Information (2)

Address	Register	Symbol	After Reset
0040h		00.000	1000004
0041h	CANO Wake-up Interrupt Control Register	C01WKIC	XXXXX000b
0042h	CANO Successful Reception Interrupt Control Register	CORECIC	XXXXX000b
0043h 0044h	CANO Successful Transmission Interrupt Control Register INT3 Interrupt Control Register	C0TRMIC INT3IC	XXXXX000b XX00X000b
	Timer B5 Interrupt Control Register	TB5IC	XX00X000D
0045h	SI/O5 Interrupt Control Register (1)	SSIC	XXXXX000b
00.401	Timer B4 Interrupt Control Register	TB4IC	
0046h	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC	XXXXX000b
0047h	Timer B3 Interrupt Control Register	TB3IC	VVVVVV0001-
004711	UARTO Bus Collision Detection Interrupt Control Register	U0BCNIC	XXXXX000b
0048h	SI/O4 Interrupt Control Register	S4IC	XX00X000b
004011	INT5 Interrupt Control Register	INT5IC	7//00//0000
0049h	SI/O3 Interrupt Control Register	S3IC	XX00X000b
	INT4 Interrupt Control Register	INT4IC	
004Ah	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
004Bh 004Ch	DMA0 Interrupt Control Register	DM0IC DM1IC	XXXXX000b
004Ch 004Dh	DMA1 Interrupt Control Register CAN0 Error Interrupt Control Register	C01ERRIC	XXXXX000b XXXXX000b
	A/D Conversion Interrupt Control Register	ADIC	XXXXXUUUD
004Eh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0051h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TA0IC	XXXXX000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXXX000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XX00X000b
000711	INT7 Interrupt Control Register (1)	INT7IC	7//00//0005
0058h	Timer A3 Interrupt Control Register	TA3IC	XX00X000b
	INT6 Interrupt Control Register (1)	INT6IC	
0059h	Timer A4 Interrupt Control Register	TA4IC TB0IC	XXXXX000b
005Ah	Timer B0 Interrupt Control Register SI/O6 Interrupt Control Register (1)	S6IC	XXXXX000b
	Timer B1 Interrupt Control Register	TB1IC	
005Bh	INT8 Interrupt Control Register (1)	INT8IC	XX00X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0060h	•		XXh
0061h			XXh
0062h	CAN0 Message Box 0: Identifier / DLC		XXh
0063h	Of the Message Box of Identifier / BES	<u> </u>	XXh
0064h			XXh
0065h			XXh
0066h 0067h		 	XXh XXh
0067H		 	XXh
0069h			XXh
006Ah	CAN0 Message Box 0: Data Field		XXh
006Bh			XXh
006Ch			XXh
006Dh			XXh
006Eh	CANO Message Box 0: Time Stamp		XXh
006Fh	OANO MESSAYE DUX U. TIME STAMP		XXh
0070h			XXh
0071h			XXh
0072h	CAN0 Message Box 1: Identifier / DLC		XXh
0073h			XXh
0074h			XXh
0075h 0076h		+	XXh XXh
0076f1 0077h			XXh
007711 0078h			XXh
0079h		 	XXh
007Ah	CAN0 Message Box 1: Data Field		XXh
007Bh			XXh
007Ch			XXh
007Dh			XXh
	CAN0 Message Box 1: Time Stamp		XXh XXh XXh

X: Undefined

- These registers exist only in the 128-pin version.
 The blank area is reserved and cannot be accessed by users.

Table 4.3 SFR Information (3)

Address	Register	Symbol	After Reset
0080h	· gioto:	2,20.	XXh
0081h			XXh
0082h	CAN0 Message Box 2: Identifier / DLC		XXh
0083h	OTHER MICOSAGE DOX 2. INCHINICITY DEC		XXh
0084h]	XXh
0085h			XXh
0086h			XXh
0087h			XXh
0088h			XXh
0089h	CAN0 Message Box 2: Data Field		XXh
008Ah	v		XXh
008Bh			XXh
008Ch			XXh XXh
008Dh			XXh
008Eh	CAN0 Message Box 2: Time Stamp	-	XXh
008Fh		1	XXh
0090h 0091h			XXh
0091h		1	XXh
0092h	CAN0 Message Box 3: Identifier / DLC		XXh
0093h			XXh
0094H]	XXh
0096h			XXh
0097h			XXh
0098h			XXh
0099h	CANO Massacra Day Or Data Field		XXh
009Ah	CAN0 Message Box 3: Data Field		XXh
009Bh			XXh
009Ch			XXh
009Dh			XXh
009Eh	CAN0 Message Box 3: Time Stamp		XXh
009Fh			XXh
00A0h			XXh
00A1h			XXh
00A2h	CAN0 Message Box 4: Identifier / DLC		XXh
00A3h	· ·		XXh XXh
00A4h		1	XXh
00A5h 00A6h		+	XXh
00A6f1		-	XXh
00A711		1	XXh
00A9h		1	XXh
00AAh	CAN0 Message Box 4: Data Field	1	XXh
00ABh			XXh
00ACh			XXh
00ADh			XXh
00AEh	CANO Massacra Rest A. Times Channe		XXh
00AFh	CAN0 Message Box 4: Time Stamp		XXh
00B0h			XXh
00B1h			XXh
00B2h	CANO Message Box 5: Identifier / DLC		XXh
00B3h	Onivo Message Dox 3. Identine / DLO		XXh
00B4h			XXh
00B5h			XXh
00B6h			XXh
00B7h			XXh
00B8h			XXh
00B9h	CAN0 Message Box 5: Data Field		XXh
00BAh	9		XXh
00BBh			XXh
00BCh			XXh
00BDh			XXh
00BEh	CAN0 Message Box 5: Time Stamp		XXh
00BFh	<u> </u>		XXh
X: Undefine			

Table 4.4 SFR Information (4)

Address	Register	Symbol	After Reset
00C0h			XXh
00C1h			XXh
00C2h	CAN0 Message Box 6: Identifier / DLC		XXh
00C3h	-		XXh
00C4h		I ⊢	XXh XXh
00C5h			XXh
00C6h			XXh
00C7h			XXh
00C8h			XXh
00C9h 00CAh	CAN0 Message Box 6: Data Field	 	XXh
00CAII			XXh
00CCh			XXh
00CDh			XXh
00CEh			XXh
00CFh	CAN0 Message Box 6: Time Stamp		XXh
00D0h			XXh
00D1h			XXh
00D1h	0.000.00		XXh
00D3h	CAN0 Message Box 7: Identifier / DLC		XXh
00D4h			XXh
00D5h			XXh
00D6h			XXh
00D7h			XXh
00D8h			XXh
00D9h	CANO Massaga Boy 7: Data Field		XXh
00DAh	CAN0 Message Box 7: Data Field		XXh
00DBh			XXh
00DCh			XXh
00DDh			XXh
00DEh	CAN0 Message Box 7: Time Stamp		XXh
00DFh	Of the Message Box 7. Time Stamp		XXh
00E0h		<u> </u>	XXh
00E1h		<u> </u>	XXh
00E2h	CAN0 Message Box 8: Identifier / DLC	<u> </u>	XXh
00E3h			XXh
00E4h			XXh
00E5h			XXh
00E6h			XXh XXh
00E7h 00E8h		- 1 ⊢	XXh
			XXh
00E9h 00EAh	CAN0 Message Box 8: Data Field		XXh
00EAn			XXh
00ECh			XXh
00EDh			XXh
00EEh	ONION DOT		XXh
00EFh	CAN0 Message Box 8: Time Stamp		XXh
00F0h			XXh
00F1h			XXh
00F2h	CANO Magazago Roy O: Idantifiar / DI C		XXh
00F3h	CAN0 Message Box 9: Identifier / DLC		XXh
00F4h			XXh
00F5h			XXh
00F6h			XXh
00F7h			XXh
00F8h			XXh
00F9h	CAN0 Message Box 9: Data Field		XXh
00FAh	S. 1. to Sougo Box o. Butta i loid		XXh
00FBh			XXh
00FCh			XXh
00FDh			XXh
00FEh	CAN0 Message Box 9: Time Stamp		XXh
00FFh			XXh

Table 4.5 SFR Information (5)

0100h 0101h	Register	Symbol	After Reset XXh
0101h			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			XXh
0102h	CANO Message Box 10: Identifier / DLC		XXh
0103h	ANO Message Box To. Identifier / DLC		XXh
0104h			XXh
0105h			XXh
0106h			XXh
0107h			XXh
0108h			XXh
0109h C	CANO Message Box 10: Data Field		XXh
010Ah			XXh
010Bh			XXh
010Ch			XXh
010Dh			XXh XXh
010Eh C	CAN0 Message Box 10: Time Stamp		XXh
010Fh 0110h			XXh
0110h			XXh
0110h			XXh
011211 C	CAN0 Message Box 11: Identifier / DLC		XXh
0114h			XXh
0115h			XXh
0116h			XXh
0117h			XXh
0118h			XXh
0110h	NANO Massacra Day 44: Data Field		XXh
011Ah	CAN0 Message Box 11: Data Field		XXh
011Bh			XXh
011Ch			XXh
011Dh			XXh
011Eh C	CANO Message Box 11: Time Stamp		XXh
011Fn	with moodage box 11. Time oramp		XXh
0120h			XXh
0121h			XXh
0122h C	CANO Message Box 12: Identifier / DLC		XXh
0123h			XXh
0124h			XXh XXh
0125h			XXh
0126h 0127h			XXh
012711 0128h			XXh
0120h			XXh
0129h C	CAN0 Message Box 12: Data Field		XXh
012Bh			XXh
012Ch			XXh
012Dh			XXh
012Eb	NANO Massacra Davido, Tima Charra		XXh
012Fh	CAN0 Message Box 12: Time Stamp		XXh
0130h			XXh
0131h			XXh
0132h	CANO Message Box 13: Identifier / DLC		XXh
0133h	ALIVO IVIGOSAGE DUA TO. IUGITILITEI / DEO		XXh
0134h			XXh
0135h			XXh
0136h			XXh
0137h			XXh
0138h			XXh
0139h C	CANO Message Box 13: Data Field		XXh
013An	V		XXh
013Bh			XXh
013Ch			XXh
013Dh			XXh
013Eh C	CAN0 Message Box 13: Time Stamp		XXh
013Fh X: Undefined			XXh

Table 4.6 SFR Information (6)

Address	Register	Symbol	After Reset
0140h	y		XXh
0141h			XXh
0142h	CAN0 Message Box 14: Identifier /DLC		XXh
0143h	·		XXh
0144h			XXh XXh
0145h 0146h			XXh
0146h			XXh
0148h			XXh
0149h	CAN0 Message Box 14: Data Field		XXh
014Ah	CANO Message Box 14. Data Fleid		XXh
014Bh			XXh
014Ch			XXh
014Dh			XXh
014Eh	CAN0 Message Box 14: Time Stamp		XXh
014Fh			XXh XXh
0150h 0151h			XXh
0151h			XXh
0153h	CAN0 Message Box 15: Identifier /DLC		XXh
0154h			XXh
0155h			XXh
0156h			XXh
0157h		L	XXh
0158h			XXh
0159h	CAN0 Message Box 15: Data Field		XXh
015Ah	•		XXh XXh
015Bh 015Ch			XXh
015Dh			XXh
015Eh	CANONIC POLICE Time Observe		XXh
015Fh	CAN0 Message Box 15: Time Stamp		XXh
0160h			XXh
0161h			XXh
0162h	CANO Global Mask Register	C0GMR	XXh
0163h	•		XXh XXh
0164h 0165h			XXh
0166h			XXh
0167h			XXh
0168h	CANOL COLLAR DESIGN	COLMAD	XXh
0169h	CAN0 Local Mask A Register	COLMAR	XXh
016Ah			XXh
016Bh			XXh
016Ch			XXh
016Dh			XXh
016Eh 016Fh	CAN0 Local Mask B Register	C0LMBR	XXh XXh
0170h		 	XXh
0170h			XXh
0171h		1	***
0173h			
0174h			
0175h			
0176h			
0177h			
0178h		+	
0179h 017Ah		+	
017An 017Bh		+ +	
017Bii		+	
017Dh			
017Eh			
017Fh			
V: Undofin			

The blank areas are reserved and cannot be accessed by users.

Table 4.7 SFR Information (7)

0180h 0182h 0182h 0182h 0184h 0185h 0186h	Address	Register	Symbol	After Reset
0182h		i iogistoi	Cynnon	7 1101 110001
0182h	0181h			
0183h 0184h 0185h 0187h 0187h 0187h 0188h 0199h	0189h			
OIBSh	0183h			
0185h	0184h			
O1827h	0185h			
0187h 0188h 0189h 0189h 0189h 0180h 0180h 0180h 0180h 0180h 0180h 0180h 0191h 0191h 0191h 0191h 0191h 0192h 020000000000000000000000000000000000				
0189h 0180h 0190h 00h 0190h 0190h 0190h 00h 0190h 00h 0190h 0190h 00h 0190h 00h 0190h 0190h 00h 00h 0190h 00h 00h 00h 00h 00h 00h 00h 00h 00h	0187h			
0189h (0180h 0180h (0180h 0180h (0180h 0181h (0180h 0181h (0190h 0191h (0190h 0192h (0192h 0193h (0194h 0195h (0194h 0195h (0194h 0197h (0194h 0197h (0194h 0198h (0194h 0189h (0189h 0148h (0144h 0148h (0144h 0148h (0144h 0148h (0144h 0148h (0144h <td></td> <td></td> <td></td> <td></td>				
0182h 0182h 0182h 0182h 0182h 0182h 0182h 0193h 0194h 0192h 0193h 0194h 0195h 0196h 0197h 0196h 0197h 0198h 0188h 000	0189h			
018Ch				
018Ch				
018Eh 018Fh 018Fh 019Th 019Th 019Th 019Th 019Zh 019Sh	018Ch			
018Eh 0190h 0190h 0191h 0192h 0192h 0192h 0193h 0194h 0195h 0196h 0196h 0198h 0198h 0198h 0199h 0191h 0196h 0197h 0196h 0197h 0196h 0197h 0198h	018Dh			
0187h	018Eh			
OFFSTAND				
0192h				
0192h	0191h			
0194h 0196h 0196h 0197h 0198h 0199h 0199h 0199h 0199h 0199h 0198h 0198h 0198h 0198h 0198h 0198h 0198h 0198h 0198h 0197h 0198h 0198h 0184h 0104h 0144h 0145h 0146h 0147h 0148h 0158h	0192h			
0195h	0193h			
0196h	0194h			
0197h 0198h 0199h 0199h 0199h 0190h 0190h 0190h 0190h 0190h 0190h 0190h 0191h 010h 0191h 010h 010				
0198h 0199h 0199h 0199h 0198h 0198h 0198h 0198h 0198h 0199h 019ch 019Fh 019Fh 019Fh 016Ah 01Abh 01Ath	0196h			
0199h 0198h 0198h 0190h 019Ch 0190h 019Fh 019Fh 01A0h 014h 01A2h 01A2h 01A3h 01A3h 01A4h 01A5h 01A6h 01A7h 01A8h 01A8h 01A8h 01A8h 01A8h 01A8h 01AAh 01ABh 01ACh 01ACh 01ACh 01ACh 01AFh 01ACh 01B0h 01B0h 01B1h 01B2h 01B2h 01B3h 01B3h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B8h 01B8h 00h 01B8h 00h 00h 01B0h 00h 00h				
019Ah 019Ch 019Ch 019Dh 019Fh 019Fh 01A0h 019Fh 01A0h 01A0h 01A1h 01A3h 01A3h 01A3h 01A3h 01A3h 01A8h 01A8h 01A8h 01A8h 01A8h 01A9h 01A8h 01A9h 01AAh 01A6h 01ABh 01A6h 01Bh 01A6h 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 00h 01Bh 00h 01Bh 00h 01Bh 00h<	0198h			
019Bh (199bh 019Ch (199bh 019Fh (100bh 0140h (1014th 01A2h (1014th 01A2h (1014th 01A3h (1014th 01A8h (1014th 01A6h (1014th 01A8h (1014th 01A8h (1014th 01A8h (1014th 01A8h (1014th 01A8h (1014th 01ABh (1014th 01ACh (1014th 01Bh (
019Ch 019Eh 019Fh 019Fh 014Ah 01A0h 01A1h 01A2h 01A3h 01A3h 01A3h 01A3h 01A5h 01A3h 01A6h 01A3h 01A6h 01A3h 01A8h 01A3h 01A8h 01A3h 01A8h 01A3h 01A8h 01A3h 01A8h 01A3h 01A8h 01A4h 01A9h 01A4h 01A6h 01A6h 01ACh 01A6h 01ACh 01A6h 01ACh 01A6h 01ACh 01A6h 01AFh 01A6h 01AFh 01A6h 01AFh 01A6h 01AFh 01A6h 01AFh 01A6h 01Bh 01A6h 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 00h 01Bh				
019Dh 019Eh 019Fh 0100h 01A0h 01A1h 01A2h 01A3h 01A3h 01A4h 01A6h 01A6h 01A7h 01A8h 01A8h 01A9h 01AAh 01A8h 01AAh 01ABh 01ACh 01ACh 01AFh 01AFh 01B1h 01B1h 01B2h 01B3h 01B3h 01B3h 01B6h 01B7h 01B7h FMR0 00000001b 01B8h 00h 01B8h 00h 01BBh Address Match Interrupt Register 2 AIER2 XXXXXXX00b 01BCh 00h 01BCh 00h 00h 01BCh	019Bh			
019Eh 019Fh 019Fh 0140h 01A0h 0142h 01A2h 0142h 01A3h 0144h 01A5h 0147h 01A8h 0147h 01A8h 0147h 01A8h 0144h 01A8h 0144h 01A8h 0144h 01A8h 0144h 01A8h 0144h 01ACh 0144h 01ACh 014Ah 01AEh 014Ah 01B0h 014Ah 01B0h 015Ah 01B1h 016Ah 01B2h 018Ah 01B3h 018Ah 01B3h 018Ah 01B3h 018Ah 01B3h 018Ah 01B3h <td>019Ch</td> <td></td> <td></td> <td></td>	019Ch			
019Fh 01A0h 01A0h 01A1h 01A2h 01A3h 01A3h 01A3h 01A4h 01A5h 01A6h 01A6h 01A7h 01A8h 01A8h 01A9h 01A8h 01A8h 01ARh 01ARh 01ACh 01ACh 01ACh 01ACh 01AFh 01ACh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 01Bh 00h	019Dh			
O1A0h	019EN			
01A1h 01A2h 01A2h 01A3h 01A3h 01A4h 01ASh 01ASh 01ASh 01ASh 01A8h 01ASh 01A8h 01ASh 01A9h 01ASh 01ABh 01ABh 01ACh 01ADh 01ACh 01ACh 01AFh 01AFh 01B0h 01B1h 01B3h 01B3h 01B4h 01B3h 01B5h Flash Memory Control Register 1 (1) 01B7h FMR0 00000001b 01B8h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BCh 00h XOh 01BCh Address Match Interrupt Register 3 RMAD3 00h 01BFh 00h XOh 00h	01950			
01A2h 01A3h 01A3h 0 01A4h 0 01A5h 0 01A6h 0 01A7h 0 01A8h 0 01AAh 0 01AAh 0 01ACh 0 01ACh 0 01ACh 0 01ACh 0 01AFh 0 01B0h 0 01B1h 0 01B2h 0 01B3h 0 01B5h 0 01B6h Flash Memory Control Register 1 (1) 01B8h 0 01B7h Flash Memory Control Register 0 (1) 01B8h 00h	01AUN			
01A3h 01A4h 01A5h 01A6h 01A7h 01A8h 01A9h 01ABh 01ABh 01ACh 01ACh 01AFh 01AFh 01B0h 01B1h 01B2h 01B3h 01B5h Flash Memory Control Register 1 (1) FMR1 01B6h 01B7h Flash Memory Control Register 2 (1) FMR0 01B8h 01B8h 01B8h 01B8h 01B8h 01B8h 01B8h	01A1II			
01A5h 01A5h 01A6h 01A7h 01A8h 01A9h 01A0h 01B0h 01B0	01A2H			
01A5h 01A6h 01A7h 01A8h 01A8h 01A9h 01AAh 01ABh 01ABh 01ABh 01ACh 01ADh 01ADh 01ACh 01AFh 01B0h 01B1h 01B1h 01B2h 01B3h 01B3h 01B4h 01B7h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B8h 01B8h 00h 01B8h 00h 00000001b 01B8h 00h X0h 01B8h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh Address Match Interrupt Enable Register 2 AIER2 XXXXXXX00b 01BCh 01BCh 00h 00h 01BCh 01BCh 00h 00h 01BFh 01BFh 00h 00h	01A311			
01A6h 01A7h 01A8h 01A9h 01A9h 01A8h 01ABh 01ABh 01ABh 01ACh 01ACh 01ACh 01APh 01AFh 01AFh 01AFh 01B0h 01B1h 01B3h 01B3h 01B4h 01B5h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 01B7h Flash Memory Control Register 0 (1) FMR0 00000001b 01B8h 01B8h 00h 0h 01B8h Address Match Interrupt Register 2 AIER2 XXXXXX00b 01BCh 00h 0h	01A411			
01A7h	01A6h			
01A8h 01A9h 01AAh 01ABh 01ABh 01ACh 01ACh 01ACh 01AEh 01AEh 01AFh 01AEh 01B0h 01B0h 01B1h 01B2h 01B3h 01B4h 01B5h Flash Memory Control Register 1 (1) 01B7h FMR1 0X00XX0Xb 01B8h 00h 01B8h 00h 01B8h 00h 01B9h Address Match Interrupt Register 2 RMAD2 01BCh 00h 0	01A7h			
01A9h 01AAh 01ABh 01ACh 01ADh 01AEh 01AFh 01B0h 01B1h 01B2h 01B3h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XXXXb 01B6h 01B7h Flash Memory Control Register 0 (1) FMR0 00000001b 01B8h 01B8h 01BAh 01BAh 01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXXX00b 01BDh Address Match Interrupt Register 3 01BFh 01BFh	01A8h			
01AAh 01ABh 01ACh 01ADh 01AEh 01AFh 01B0h 01B1h 01B2h 01B3h 01B4h 01B6h 01B7h Flash Memory Control Register 1 (1) FMR0 01B7h Flash Memory Control Register 0 (1) FMR0 01B8h 01B9h Address Match Interrupt Register 2 RMAD2 01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXXX00b 01BCh 01BDh Address Match Interrupt Register 3 RMAD3 01BFh 01BFh	01A9h			
01ABh 01ACh 01ADh	01AAh			
01ACh 01ADh 01AEh 01AFh 01B0h 01B0h 01B1h 01B2h 01B3h 01B4h 01B5h Flash Memory Control Register 1 (1) 01B6h FMR1 0X00XX0Xb 01B7h Flash Memory Control Register 0 (1) FMR0 00000001b 01B8h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh XXXXXX00b XOh 01BCh 01BCh 00h 01BCh Address Match Interrupt Register 3 RMAD3 00h 01BFh Address Match Interrupt Register 3 RMAD3 00h	01ABh			
01ADh 01AEh 01AFh 01B0h 01B0h 01B1h 01B2h 01B3h 01B3h 01B4h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 01B7h Flash Memory Control Register 0 (1) FMR0 00000001b 01B8h 00h 00h 00h 01BAh X0h X0h 01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXX00b 01BCh 00h 00h 01BCh 00h 00h 01BCh 00h X0h 01BFh RMAD3 00h	01ACh			
01AEh 01AFh 01B0h 01B0h 01B1h 01B1h 01B2h 01B3h 01B3h 01B4h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 01B7h FMR0 00000001b 01B8h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BCh 00BCh XXXXXXX00b 01BCh 00h 00h 01BCh Address Match Interrupt Register 3 RMAD3 00h 01BFh 01BFh XXXXXXX00b	01ADh			
01AFh 01B0h 01B1h 01B1h 01B2h 01B3h 01B3h 01B3h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 01B7h FIash Memory Control Register 0 (1) FMR0 00000001b 01B8h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh X0h X0h 01BCh 00h 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BFh 01BFh X0h	01AEh			
01B0h 01B1h 01B2h 01B2h 01B3h 01B4h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 01B7h Flash Memory Control Register 0 (1) FMR0 000000001b 01B8h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh X0h X0h 01BCh 01BCh 00h 01BCh 00h 00h 01BCh 00h 00h 01BEh RMAD3 00h 01BFh 01BFh X0h	01AFh			
01B2h 01B3h 01B4h 01B4h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 01B6h 000000001b 01B7h Flash Memory Control Register 0 (1) FMR0 00000001b 01B8h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BRh Address Match Interrupt Enable Register 2 AIER2 XXXXXXX00b 01BCh 00h 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BFh 01BFh 01BFh 01BFh 01BFh	01B0h			
01B3h 01B4h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 01B6h 000000001b 00000001b 01B7h Flash Memory Control Register 0 (1) FMR0 00000001b 01B8h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh XXXXXX00b 00h 01BCh 01BCh 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BFh 01BFh XXXXXX00b	01B1h			
01B4h 01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 01B7h FIash Memory Control Register 0 (1) FMR0 00000001b 01B8h 00h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh XXXXXX00b 00h 01BCh 01BCh 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BFh 01BFh XXXXXX00b				
01B5h Flash Memory Control Register 1 (1) FMR1 0X00XX0Xb 01B6h 00B7h FIash Memory Control Register 0 (1) FMR0 00000001b 01B8h 00h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh X0h X0h 01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXX00b 01BCh 00h 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BFh X0h X0h	01B3h			
01B6h 01B7h Flash Memory Control Register 0 (1) FMR0 00000001b 01B8h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh X0h X0h 01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXXX00b 01BCh 00h 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BFh X0h X0h	01B4h			
01B7h Flash Memory Control Register 0 (1) FMR0 000000001b 01B8h 00h 00h 01B9h Address Match Interrupt Register 2 RMAD2 00h 01BAh X0h X0h 01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXXX00b 01BCh 00h 00h 01BCh RMAD3 00h 01BFh X0h X0h	01B5h	Flash Memory Control Register 1 (1)	FMR1	0X00XX0Xb
01B8h 00h 01B9h Address Match Interrupt Register 2 00h 01BAh X0h 01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXXX00b 01BCh 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BFh X0h	01B6h	FI - I M	EN ADO	200005
01B9h O1B9h O1BAh Address Match Interrupt Register 2 RMAD2 O0h X0h 01BBh O1BBh O1BBh O1BBh O1BBh O1BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXX00b 01BDh O1BBh O1BBh O1BFh RMAD3 O0h X0h	01B7h	Flash Memory Control Register 0 (1)	FMH0	
01BAh X0h 01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXXX00b 01BCh 00h 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BEh X0h 01BFh X0h	01B8h	Adduses Matak Intervient Denistry O	DMADO	
01BBh Address Match Interrupt Enable Register 2 AIER2 XXXXXX00b 01BCh 00h 00h 01BDh Address Match Interrupt Register 3 RMAD3 00h 01BEh X0h 01BFh X0h	01B9h	Address Match Interrupt Hegister 2	HMAD2	
01BCh 00h 01BDh Address Match Interrupt Register 3 00h 01BEh X0h	U1BAh	Address Match Interview Cashle Desiste : 0	AIEDO	
01BDh Address Match Interrupt Register 3 RMAD3 00h 01BEh X0h 01BFh Image: Control of the control	01BBh	Address Match Interrupt Enable Hegister 2	AIEH2	
01BEh X0h 01BFh	01BCh	Address Motah Interrunt Posister 2	I DMADO	
01BFh	OIBDD	Address Match Interrupt Hegister 3 HMAD3	VON	
	01BEh			XUN
V. Undefined				

X: Undefined

- These registers are included in the flash memory version. Cannot be accessed by users in the mask ROM version.
 The blank areas are reserved and cannot be accessed by users.

Table 4.8 SFR Information (8)

Address	Register	Symbol	After Reset
01C0h	Timer B3, B4, B5 Count Start Flag	TBSR	000XXXXXb
01C0fi	Timer 63, 64, 65 Count Start Flag	IBSR	OOOAAAAD
		+	XXh
01C2h	Timer A1-1 Register	TA11	XXh
01C3h	-		XXh
01C4h	Timer A2-1 Register	TA21	XXh
01C5h	-		XXh
01C6h	Timer A4-1 Register	TA41	XXh
01C7h	Three Dhace DWM Control Decistor C	INVC0	00h
01C8h 01C9h	Three-Phase PWM Control Register 0 Three-Phase PWM Control Register 1	INVC1	00h
	Three-Phase Output Buffer Register 0	IDB0	00h
01CAh	Three-Phase Output Buffer Register 0 Three-Phase Output Buffer Register 1	IDB1	00h
01CBh	Dead Time Timer	DTT	XXh
01CCh	Timer B2 Interrupt Occurrence Frequency Set Counter	ICTB2	XXh
01CDh	Timer B2 interrupt Occurrence Frequency Set Counter	IC1B2	AAII
01CEh	Intermed Course Colort Benister C	IFSR2	Voccoool
01CFh	Interrupt Cause Select Register 2	IF5R2	X0000000b
01D0h	Timer B3 Register	TB3	XXh
01D1h	<u> </u>		XXh
01D2h	Timer B4 Register	TB4	XXh
01D3h			XXh
01D4h	Timer B5 Register	TB5	XXh
01D5h	01/00 T 31/D 3 D 3 4 (1)	0.770	XXh
01D6h	SI/O6 Transmit/Receive Register (1)	S6TRR	XXh
01D7h			
01D8h	SI/O6 Control Register (1)	S6C	0100000b
01D9h	SI/O6 Bit Rate Generator (1)	S6BRG	XXh
01DAh	SI/O3, 4, 5, 6 Transmit/Receive Register (2)	S3456TRR	XXXX0000b
01DBh	Timer B3 Mode Register	TB3MR	00XX0000b
01DCh	Timer B4 Mode Register	TB4MR	00XX0000b
01DDh	Timer B5 Mode Register	TB5MR	00XX0000b
01DEh	Interrupt Cause Select Register 0	IFSR0	00h
01DFh	Interrupt Cause Select Register 1	IFSR1	00h
01E0h	SI/O3 Transmit/Receive Register	S3TRR	XXh
01E1h			
01E2h	SI/O3 Control Register	S3C	01000000b
01E3h	SI/O3 Bit Rate Generator	S3BRG	XXh
01E4h	SI/O4 Transmit/Receive Register	S4TRR	XXh
01E5h			
01E6h	SI/O4 Control Register	S4C	01000000b
01E7h	SI/O4 Bit Rate Generator	S4BRG	XXh
01E8h	SI/O5 Transmit/Receive Register (1)	S5TRR	XXh
01E9h			
01EAh	SI/O5 Control Register (1)	S5C	01000000b
01EBh	SI/O5 Bit Rate Generator (1)	S5BRG	XXh
01ECh	UART0 Special Mode Register 4	U0SMR4	00h
01EDh	UART0 Special Mode Register 3	U0SMR3	000X0X0Xb
01EEh	UART0 Special Mode Register 2	U0SMR2	X000000b
01EFh	UART0 Special Mode Register	U0SMR	X000000b
01F0h	UART1 Special Mode Register 4	U1SMR4	00h
01F1h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
01F2h	UART1 Special Mode Register 2	U1SMR2	X000000b
01F3h	UART1 Special Mode Register	U1SMR	X000000b
01F4h	UART2 Special Mode Register 4	U2SMR4	00h
01F5h	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
01F6h	UART2 Special Mode Register 2	U2SMR2	X000000b
01F7h	UART2 Special Mode Register	U2SMR	X000000b
01F8h	UART2 Transmit/Receive Mode Register	U2MR	00h
01F9h	UART2 Bit Rate Generator	U2BRG	XXh
01FAh	LIARTO Transmit Buffor Bogistor	LIOTE	XXh
01FBh	UART2 Transmit Buffer Register	U2TB —	XXh
01FCh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
01FDh	UART2 Transmit/Receive Control Register 1	U2C1	0000010b
01FEh	LIADTO Dessive Duffer Dessister		XXh
01FFh	UART2 Receive Buffer Register	U2RB —	XXh
X: Undefine	. if	<u> </u>	

X: Undefined

- These registers exist only in the 128-pin version.
 The S5TRF and S6TRF bits in the S3456TRR register are used in the 128-pin version.
 The blank areas are reserved and cannot be accessed by users.

Table 4.9 SFR Information (9)

Address	Register	Symbol	After Reset
0200h	CAN0 Message Control Register 0	COMCTLO	00h
0201h	CAN0 Message Control Register 1	C0MCTL1	00h
0202h	CAN0 Message Control Register 2	C0MCTL2	00h
0203h	CAN0 Message Control Register 3	C0MCTL3	00h
0204h	CAN0 Message Control Register 4	C0MCTL4	00h
0205h	CAN0 Message Control Register 5	C0MCTL5	00h
0206h	CAN0 Message Control Register 6	C0MCTL6	00h
0207h	CAN0 Message Control Register 7	C0MCTL7	00h
0208h	CAN0 Message Control Register 8	C0MCTL8	00h
0209h	CAN0 Message Control Register 9	C0MCTL9	00h
020Ah	CAN0 Message Control Register 10	C0MCTL10	00h
020Bh	CANO Message Control Register 11	C0MCTL11	00h
020Ch	CANO Message Control Register 12	C0MCTL12	00h
020Dh	CANO Message Control Register 13	C0MCTL13	00h
020Eh	CANO Message Control Register 14	C0MCTL14	00h
020En	CANO Message Control Register 15	C0MCTL15	00h
		OUNIOTEIS	X0000001b
0210h	CAN0 Control Register	C0CTLR —	XX0X0000b
0211h			
0212h	CAN0 Status Register	COSTR	00h
0213h			X0000001b
0214h	CANO Slot Status Register	COSSTR	00h
0215h		1133	00h
0216h	CAN0 Interrupt Control Register	COICR	00h
0217h		33.3	00h
0218h	CAN0 Extended ID Register	COIDR	00h
0219h		001211	00h
021Ah	CAN0 Configuration Register	C0CONR -	XXh
021Bh	OANO Configuration register		XXh
021Ch	CAN0 Receive Error Count Register	C0RECR	00h
021Dh	CAN0 Transmit Error Count Register	C0TECR	00h
021Eh	CAN0 Time Stamp Register	COTSR	00h
021Fh	CANO Time Stamp negister	COTSN	00h
0220h			
0221h			
0222h			
0223h			
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh		+	
022Ch			
022Dh		- 	
022DH 022Eh			
022En		+ +	
			Y0000015
0230h	CAN1 Control Register	C1CTLR —	X0000001b
0231h	·		XX0X0000b
0232h			
0233h			
0234h			
0235h			
0236h			
0237h			
0238h			
0239h			
023Ah			
023Bh			
023Ch			
023Dh			
023Eh			
023Fh			
	ad.		

NOTE:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.10 SFR Information (10)

Address	Register	Symbol	After Reset
0240h	1 logistor	Cymbol	71101 110001
0241h			
0242h			XXh
0243h	CAN0 Acceptance Filter Support Register	C0AFS	XXh
0244h			70
0245h			
0246h			
0247h			
0247h			
0249h			
024911 024Ah			
024An			
024Ch			
024Ch			
024DH 024Eh			
024EII			
024FII			
0250h			
0251h			
0252h			
0253h			
0254h			
0255h			
0256h			
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	00h
025Fh	CANO Clock Select Register	CCLKR	00h
0260h			
0261h			
0262h			
0263h			
0264h			
0265h			
0266h			
0267h			
0268h			
0269h			
026Ah			
026Bh			
026Ch			
026Dh			
026Eh			
026Fh			
0270h			
to			
0372h			
0373h			
0374h			
0374h			
0375h			
0376h			
0377H			
0376fi 0379h			
037Ah			
037Bh			
037Ch			
037Dh			
037Eh			
037Fh			
X: Undefine			

X: Undefined

NOTE:

The blank areas are reserved and cannot be accessed by users.

Table 4.11 SFR Information (11)

Address	Register	Symbol	After Reset
0380h	Count Start Flag	TABSR	00h
0381h	Clock Prescaler Reset Flag	CPSRF	0XXXXXXb
0382h	One-Shot Start Flag	ONSF	00h
0383h	Trigger Select Register	TRGSR	00h
0384h	Up/Down Flag	UDF	00h ⁽¹⁾
0385h	-p	351	
0386h			XXh
0387h	Timer A0 Register	TA0	XXh
0388h			XXh
0389h	Timer A1 Register	TA1	XXh
038Ah			XXh
038Bh	Timer A2 Register	TA2	XXh
038Ch			XXh
038Dh	Timer A3 Register	TA3	XXh
038Eh			XXh
038Fh	Timer A4 Register	TA4	XXh
0390h			XXh
0391h	Timer B0 Register	TB0	XXh
			XXh
0392h 0393h	Timer B1 Register	TB1	XXh
			XXh
0394h	Timer B2 Register	TB2	XXh
0395h	Timer A0 Mode Register	TAOMR	00h
0396h	Timer A1 Mode Register	TA1MR	00h
0397h	Timer A2 Mode Register Timer A2 Mode Register	TA2MR	00h
0398h	Timer A3 Mode Register		00h
0399h	<u> </u>	TA3MR	
039Ah	Timer A4 Mode Register	TA4MR	00h
039Bh	Timer B0 Mode Register Timer B1 Mode Register	TB0MR	00XX0000b
039Ch		TB1MR	00XX0000b
039Dh	Timer B2 Mode Register	TB2MR	00XX0000b
039Eh	Timer B2 Special Mode Register	TB2SC	XXXXXX00b
039Fh	HADTO To accessivity and a province	LIONAD	0.01
03A0h	UARTO Transmit/Receive Mode Register	U0MR	00h
03A1h	UART0 Bit Rate Generator	U0BRG	XXh
03A2h	UART0 Transmit Buffer Register	U0TB —	XXh
03A3h			XXh
03A4h	UARTO Transmit/Receive Control Register 0	U0C0	00001000b
03A5h	UART0 Transmit/Receive Control Register 1	U0C1	00XX0010b
03A6h	UART0 Receive Buffer Register	U0RB —	XXh
03A7h			XXh
03A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
03A9h	UART1 Bit Rate Generator	U1BRG	XXh
03AAh	UART1 Transmit Buffer Register	U1TB	XXh
03ABh			XXh
03ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
03ADh	UART1 Transmit/Receive Control Register 1	U1C1	00XX0010b
03AEh	UART1 Receive Buffer Register	U1RB	XXh
03AFh			XXh
03B0h	UART Transmit/Receive Control Register 2	UCON	X000000b
03B1h			
03B2h			
03B3h			
03B4h			
03B5h			
03B6h			
03B7h			
03B8h	DMA0 Request Cause Select Register	DM0SL	00h
03B9h			
03BAh	DMA1 Request Cause Select Register	DM1SL	00h
03BBh			
03BCh	CRC Data Register	CBCD	XXh
03BDh	Uno Dala negislei	CRCD	XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh			
X: Undefine			

X: Undefined

^{1.} The TA2P to TA4P bits in the UDF register are set to "0" after reset. However, the contents in these bits are indeterminate when read. 2. The blank areas are reserved and cannot be accessed by users.

Table 4.12 SFR Information (12)

Address	Register	Symbol	After Reset
03C0h	i legistei	Ť	XXh
03C1h	A/D Register 0	AD0	XXh
03C2h			XXh
03C3h	A/D Register 1	AD1	XXh
03C4h			XXh
03C5h	A/D Register 2	AD2	XXh
03C6h			XXh
03C7h	A/D Register 3	AD3	XXh
03C8h			XXh
03C9h	A/D Register 4	AD4	XXh
03C9H			XXh
03CAII	A/D Register 5	AD5	XXh
03CCh			XXh
03CDh	A/D Register 6	AD6	XXh
			XXh
03CEh 03CFh	A/D Register 7	AD7	XXh
			AAII
03D0h			
03D1h			
03D2h			
03D3h	A/D Control Pogistor 2	ADCONO	004
03D4h	A/D Control Register 2	ADCON2	00h
03D5h	A/D Combinal Descriptor C	ADCONO	000000000
03D6h	A/D Control Register 0	ADCON0	00000XXXb
03D7h	A/D Control Register 1	ADCON1	00h
03D8h	D/A Register 0	DA0	00h
03D9h			
03DAh	D/A Register 1	DA1	00h
03DBh			
03DCh	D/A Control Register	DACON	00h
03DDh			
03DEh	Port P14 Control Register (1)	PC14	XX00XXXXb
03DFh	Pull-Up Control Register 3 (1)	PUR3	00h
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register	P6	XXh
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00X0000b
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h	Port P11 Register (1)	P11	XXh
03F6h	Port P10 Direction Register	PD10	00h
03F7h	Port P11 Direction Register (1)	PD11	00h
03F8h	Port P12 Register (1)	P12	XXh
03F9h	Port P13 Register (1)	P13	XXh
03FAh	Port P12 Direction Register (1)	PD12	00h
03FBh	Port P13 Direction Register (1)	PD13	00h
03FCh	Pull-up Control Register 0	PUR0	00h
03FDh	Pull-up Control Register 1	PUR1	0000000b ⁽¹⁾
			00000010b
03FEh	Pull-up Control Register 2	PUR2	00h
03FFh	Port Control Register	PCR	00h
X: Undefine	and and	-	-

^{3.} The blank areas are reserved and cannot be accessed by users.

^{1.} At hardware reset, the register is as follows:

[&]quot;00000000b" where "L" is input to the CNVSS pin

[&]quot;00000010b" where "H" is input to the CNVSS pin

At software reset, watchdog timer reset and oscillation stop detection reset, the register is as follows:

[&]quot;00000000b" where the PM01 to PM00 bits in the PM0 register are "00b" (single-chip mode)
"00000010b" where the PM01 to PM00 bits in the PM0 register are "01b" (memory expansion mode) or "11b" (microprocessor mode)

^{2.} These registers exist only in the 128-pin version.

5. Reset

Hardware reset, software reset, watchdog timer reset and oscillation stop detection reset are available to reset the microcomputer.

5.1 Hardware Reset

The microcomputer resets pins, the CPU and SFR by setting the RESET pin. If the supply voltage meets the recommended operating conditions, the microcomputer resets all pins when an "L" signal is applied to the RESET pin (see **Table 5.1 Pin Status When RESET Pin Level is "L"**). The oscillation circuit is also reset and the main clock starts oscillation. The microcomputer resets the CPU and SFR when the signal applied to the RESET pin changes low ("L") to high ("H"). The microcomputer executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an indeterminate state.

Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows a reset sequence. Table 5.1 lists pin states while the RESET pin is held low ("L").

5.1.1 Reset on a Stable Supply Voltage

- (1) Apply "L" to the RESET pin
- (2) Apply 20 or more clock cycles to the XIN pin
- (3) Apply "H" to the RESET pin

5.1.2 Power-on Reset

- (1) Apply "L" to the RESET pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Insert td(P-R) ms as wait time for the internal voltage to stabilize
- (4) Apply 20 or more clock cycles to the XIN pin
- (5) Apply "H" to the RESET pin

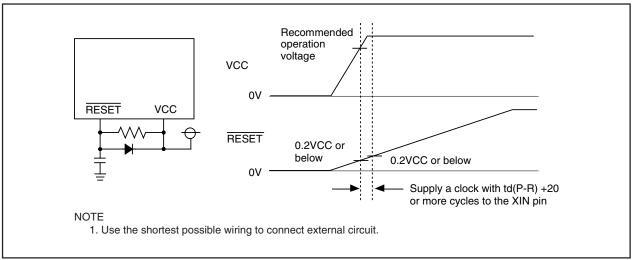


Figure 5.1 Example Reset Circuit

Table 5.1 Pin Status When RESET Pin Level is "L"

	Wileli NESET FIII Level			
	Status			
Pin Name	CNVSS = VSS CNVSS =		= VCC (1)	
	ONV33 = V33	BYTE = VSS	BYTE = VCC	
P0	Input port	Data input	Data input	
P1	Input port	Data input	Input port	
P2, P3, P4_0 to P4_3	Input port	Address output (undefined)	Address output (undefined)	
P4_4	Input port	CS0 output ("H" is output)	CS0 output ("H" is output)	
P4_5 to P4_7	Input port	Input port (Pulled high)	Input port (Pulled high)	
P5_0	Input port	WR output ("H" is output)	WR output ("H" is output)	
P5_1	Input port	BHE output (undefined)	BHE output (undefined)	
P5_2	Input port	RD output ("H" is output)	RD output ("H" is output)	
P5_3	Input port	BCLK output	BCLK output	
P5_4	Input port	HLDA output	HLDA output	
		(The output value depends on	(The output value depends on	
		the input to the HOLD pin)	the input to the HOLD pin)	
P5_5	Input port	HOLD input	HOLD input	
P5_6	Input port	ALE output ("L" is output)	ALE output ("L" is output)	
P5_7	Input port	RDY input	RDY input	
P6, P7, P8_0 to P8_4,	Input port	Input port	Input port	
P8_6, P8_7, P9, P10				
P11, P12, P13,	Input port	Input port	Input port	
P14_0, P14_1 (2)				

- 1. Shown here is the valid pin state when the internal power supply voltage has stabilized after power-on. When CNVSS = VCC, the pin state is indeterminate until the internal power supply voltage stabilizes.
- 2. P11, P12, P13, P14_0 and P14_1 pins are only in the 128-pin version.

5.2 Software Reset

The microcomputer resets pins, the CPU and SFR when the PM03 bit in the PM0 register is set to "1" (microcomputer reset). Then the microcomputer executes the program in an address determined by the reset vector. Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable. In the software reset, the microcomputer does not reset a part of the SFR. Refer to **4. Special Function Register (SFR)** for details.

Processor mode remains unchanged since the PM01 to PM00 bits in the PM0 register are not reset.

5.3 Watchdog Timer Reset

The microcomputer resets pins, the CPU and SFR when the PM12 bit in the PM1 register is set to "1" (reset when watchdog timer underflows) and the watchdog timer underflows. Then the microcomputer executes the program in an address determined by the reset vector.

In the watchdog timer reset, the microcomputer does not reset a part of the SFR. Refer to **4. Special Function Register (SFR)** for details.

Processor mode remains unchanged since the PM01 to PM00 bits in the PM0 register are not reset.

5.4 Oscillation Stop Detection Reset

The microcomputer resets and stops pins, the CPU and SFR when the CM27 bit in the CM2 register is "0" (reset at oscillation stop, re-oscillation detection), if it detects main clock oscillation circuit stop. Refer to **8.5**Oscillation Stop and Re-Oscillation Detection Function for details.

In the oscillation stop detection reset, the microcomputer does not reset a part of the SFR. Refer to **4. Special Function Register (SFR)** for details.

Processor mode remains unchanged since the PM01 to PM00 bits in the PM0 register are not reset.

5.5 Internal Space

Figure 5.3 shows CPU register status after reset. Refer to **4. Special Function Register (SFR)** for SFR states after reset.

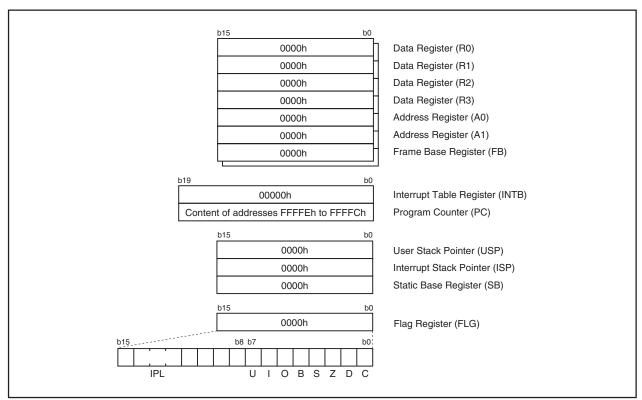


Figure 5.3 CPU Register Status After Reset

6. Processor Mode

6.1 Types of Processor Mode

Three processor modes are available to choose from: single-chip mode, memory expansion mode, and microprocessor mode. Table 6.1 shows the features of these processor modes.

Table 6.1 Features of Processor Modes

Processor Mode	Access Space	Pins Which are Assigned I/O Ports
Single-chip Mode	SFR, internal RAM, internal ROM	All pins are I/O ports or
		peripheral function I/O pins
Memory Expansion Mode	SFR, internal RAM, internal ROM,	Some pins serve as bus control pins (1)
	external area ⁽¹⁾	
Microprocessor Mode	SFR, internal RAM, external area (1)	Some pins serve as bus control pins (1)

NOTE:

1. Refer to 7. Bus.

6.2 Setting Processor Modes

Processor mode is set by using the CNVSS pin and the PM01 to PM00 bits in the PM0 register.

Table 6.2 shows the processor mode after hardware reset. Table 6.3 shows the PM01 to PM00 bits set values and processor modes.

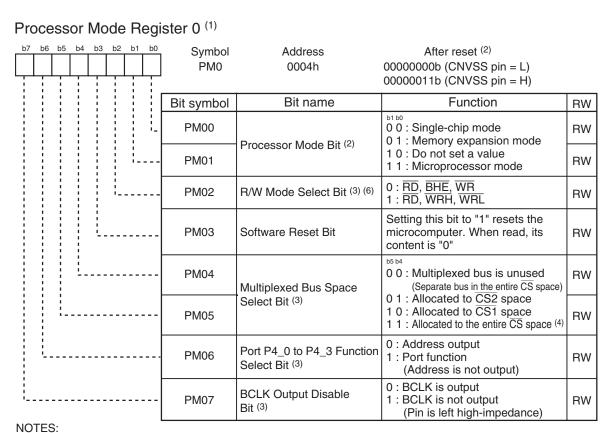
Table 6.2 Processor Mode After Hardware Reset

CNVSS Pin Input Level	Processor Mode
VSS	Single-chip mode
VCC (1) (2)	Microprocessor mode

NOTES:

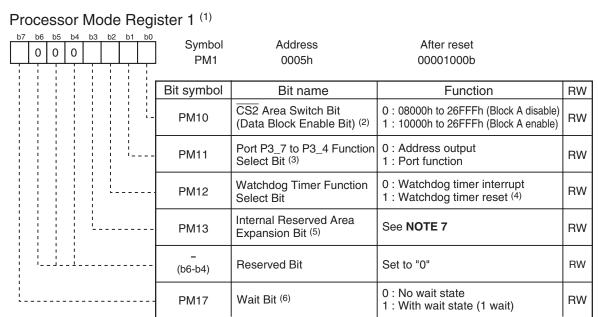
- 1. If the microcomputer is reset in hardware by applying VCC to the CNVSS pin, the internal ROM cannot be accessed regardless of PM01 to PM00 bits.
- 2. The multiplexed bus cannot be assigned to the entire CS space.

Table 6.3 PM01 to PM00 Bits Set Values and Processor Modes


PM01 to PM 00 Bits	Processor Mode
00b	Single-chip mode
01b	Memory expansion mode
10b	Do not set a value
11b	Microprocessor mode

Rewriting the PM01 to PM00 bits places the microcomputer in the corresponding processor mode regardless of whether the input level on the CNVSS pin is "H" or "L". Note, however, that the PM01 to PM00 bits cannot be rewritten to "01b" (memory expansion mode) or "11b" (microprocessor mode) at the same time the PM07 to PM02 bits are rewritten. Note also that these bits cannot be rewritten to enter microprocessor mode in the internal ROM, nor can they be rewritten to exit microprocessor mode in areas overlapping the internal ROM.

If the microcomputer is reset in hardware by applying VCC to the CNVSS pin (hardware reset), the internal ROM cannot be accessed regardless of PM01 to PM00 bits.


Figures 6.1 and 6.2 show the processor mode related registers. Figure 6.3 shows the memory map in single-chip mode. Figures 6.4 to 6.7 show the memory map and $\overline{\text{CS}}$ area in memory expansion mode and microprocessor mode.

- 1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable).
 - 2. The PM01 to PM00 bits do not change at software reset, watchdog timer reset and oscillation stop detection reset.
 - 3. Effective when the PM01 to PM00 bits are set to "01b" (memory expansion mode) or "11b" (microprocessor mode).
 - 4. To set the PM01 to PM00 bits are "01b" and the PM05 to PM04 bits are "11b" (multiplexed bus assigned to the entire \overline{CS} space), apply an "H" signal to the BYTE pin (external data bus is 8-bit width). While the CNVSS pin is held "H" (VCC), do not rewrite the PM05 to PM04 bits to "11b" after reset. If the PM05 to PM04 bits are set to "11b" during memory expansion mode, P3_1 to P3_7 and P4_0 to P4_3 become I/O ports, in which case the accessible area for each \overline{CS} is 256 bytes.

Figure 6.1 PM0 Register

NOTES:

- 1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable).
- 2. For the mask ROM version, this bit must be set to "0".

For the flash memory version, the PM10 bit also controls block A by enabling or disabling it. When the PM10 bit is set to "1", 0F000h to 0FFFFh (block A) can be used as internal ROM area.

In addition, the PM10 bit is automatically set to "1" when the FMR01 bit in the FMR0 register is "1" (CPU rewrite

- 3. Effective when the PM01 to PM00 bits are set to "01b" (memory expansion mode) or "11b" (microprocessor mode).
- 4. The PM12 bit is set to "1" by writing a "1" in a program. (Writing a "0" has no effect.)
- 5. Be sure to set this bit to "0" except for products with internal ROM area over 192 Kbytes.

 The PM13 bit is automatically set to "1" when the FMR01 bit in the FMR0 register is "1" (CPU rewrite mode).
- 6. When the PM17 bit is set to "1" (with wait state), one wait state is inserted when accessing the internal RAM or internal ROM.
 - When the PM17 bit is set to "1" and accesses an external area, set the CSiW bit (i = 0 to 3) in the CSR register to "0" (with wait state).
- 7. The access area is changed by the PM13 bit as listed in the table below.

Access	area	PM13 = 0 PM13 = 1		
Internal	nternal RAM Up to addresses 00400h to 03FFFh (15 Kbytes) ROM Up to addresses D0000h to FFFFFh (192 Kbytes)		The entire area is usable	
Internal			The entire area is usable	
		Addresses 04000h to 07FFFh are usable	Addresses 04000h to 07FFFh are reserved	
External		Addresses 80000h to CFFFFh are usable	Addresses 80000h to CFFFFh are reserved	
			(Memory expansion mode)	

Figure 6.2 PM1 Register

addresses 08000h to 26FFFh for CS2 area).

Figure 6.3 Memory Map

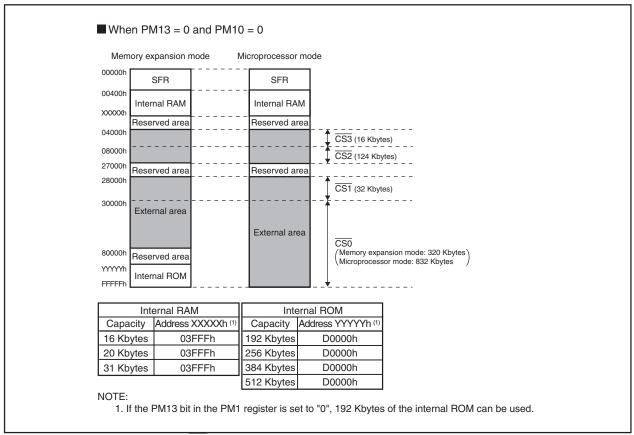


Figure 6.4 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (1)

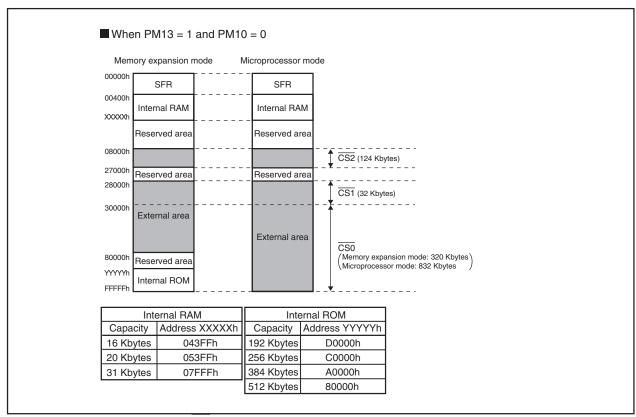


Figure 6.5 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (2)

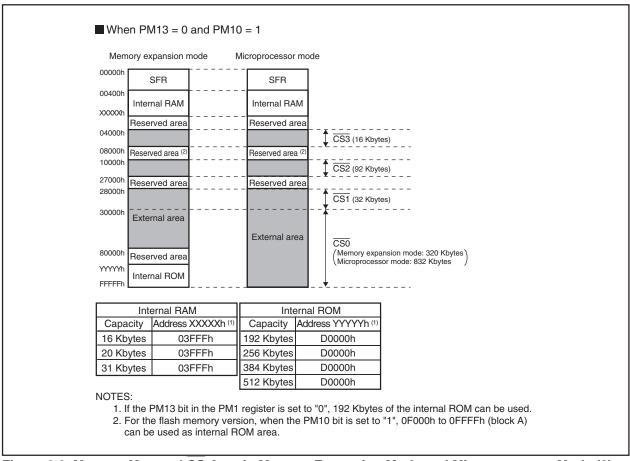


Figure 6.6 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (3)

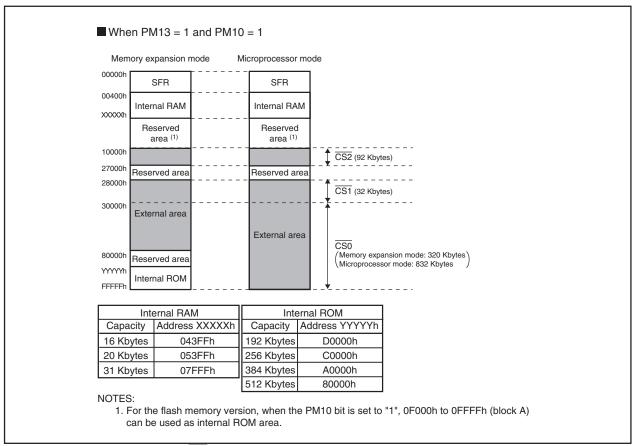


Figure 6.7 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (4)

7. Bus

During memory expansion or microprocessor mode, some pins serve as the bus control pins to perform data input/output to and from external devices. These bus control pins include A0 to A19, D0 to D15, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{RD}}$, $\overline{\text{WRL/WR}}$, $\overline{\text{WRH/BHE}}$, ALE, $\overline{\text{RDY}}$, $\overline{\text{HOLD}}$, $\overline{\text{HLDA}}$ and BCLK.

7.1 Bus Mode

The bus mode, either multiplexed or separate, can be selected using the PM05 to PM04 bits in the PM0 register.

7.1.1 Separate Bus

In this bus mode, data and address are separate.

7.1.2 Multiplexed Bus

In this bus mode, data and address are multiplexed.

7.1.2.1 When the input level on BYTE pin is high (8-bit data bus)

D0 to D7 and A0 to A7 are multiplexed.

7.1.2.2 When the input level on BYTE pin is low (16-bit data bus)

D0 to D7 and A1 to A8 are multiplexed. D8 to D15 are not multiplexed. Do not use D8 to D15. External devices connecting to a multiplexed bus are allocated to only the even addresses of the microcomputer. Odd addresses cannot be accessed.

Table 7.1 shows the difference between a separate bus and multiplexed bus.

Table 7.1 Difference between Separate Bus and Multiplexed Bus

Pin Name (1)	Separate Bus	Multiplexed Bus		
Fili Name	Separate bus	BYTE = H	BYTE = L	
P0_0 to P0_7/D0 to D7	D0 to D7	(NOTE 2)	(NOTE 2)	
P1_0 to P1_7/D8 to D15	X	I/O Port P1_0 to P1_7	(NOTE 2)	
P2_0/A0(/D0/-)	X	X A0 D0	X A0	
P2_1 to P2_7/A1 to A7 (/D1 to D7/D0 to D6)	X A1 to A7	XA1 to A7 D1 to D7	XA1 to A7 D0 to D6	
P3_0/A8(/-/D7)	X	X	X A8 \ D7 \ X	

- 1. See Table 7.6 Pin Functions for Each Processor Mode for bus control signals other than the above.
- 2. It changes with a setup of PM05 to PM04, and area to access. See **Table 7.6 Pin Functions for Each Processor Mode** for details.

7.2 Bus Control

The following describes the signals needed for accessing external devices and the functionality of software wait.

7.2.1 Address Bus

The address bus consists of 20 lines, A0 to A19. The address bus width can be chosen to be 12, 16 or 20 bits by using the PM06 bit in the PM0 register and the PM11 bit in the PM1 register. Table 7.2 shows the PM06 and PM11 bits set values and address bus widths.

When processor mode is changed from single-chip mode to memory expansion mode, the address bus is indeterminate until any external area is accessed.

Table 7.2 PM06 and PM11 Bits Set Value and Address Bus Width

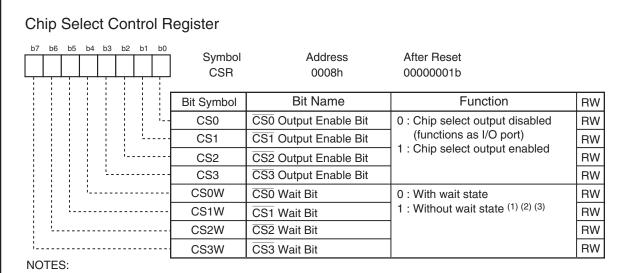
Set Value (1)	Pin Function	Address Bus Width
PM11 = 1	P3_4 to P3_7	12 bits
PM06 = 1	P4_0 to P4_3	
PM11 = 0	A12 to A15	16 bits
PM06 = 1	P4_0 to P4_3	
PM11 = 0	A12 to A15	20 bits
PM06 = 0	A16 to A19	

NOTE:

1. No values other than those shown above can be set.

7.2.2 Data Bus

When input on the BYTE pin is high (data bus is an 8-bit width), 8 lines D0 to D7 comprise the data bus; when input on the BYTE pin is low (data bus is a 16-bit width), 16 lines D0 to D15 comprise the data bus. Do not change the input level on the BYTE pin while in operation.


7.2.3 Chip Select Signal

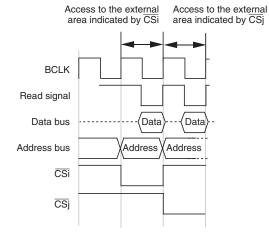
The chip select (hereafter referred to as the CS) signals are output from the CSi (i = 0 to 3) pins. These pins can be chosen to function as I/O ports or as \overline{CS} by using the CSi bit in the CSR register.

Figure 7.1 shows the CSR register.

During 1 Mbyte mode, the external area can be separated into up to 4 by the $\overline{\text{CSi}}$ signal which is output from the $\overline{\text{CSi}}$ pin.

Figure 7.2 shows the example of address bus and CSi signal output.

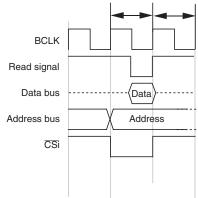
- 1. Where the RDY signal is used in the area indicated by CSi (i = 0 to 3) or the multiplexed bus is used, set the CSiW bit to "0" (Wait state).
- 2. If the PM17 bit in the PM1 register is set to "1" (with wait state), set the CSiW bit to "0" (with wait state).
- 3. When the CSiW bit = 0 (with wait state), the number of wait states (in terms of clock cycles) can be selected using the CSEi1W to CSEi0W bits in the CSE register.


Figure 7.1 CSR Register

Example 1

To access the external area indicated by $\overline{\text{CSj}}$ in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$.

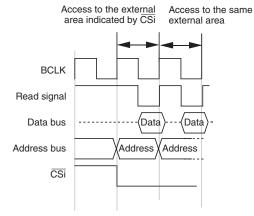
The address bus and the chip select signal both change state between these two cycles.



Example 2

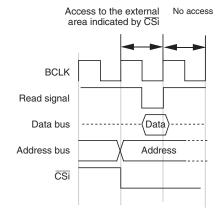
To access the internal ROM or internal RAM in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$.

The chip select signal changes state but the address bus does not change state.



Example 3

To access the external area indicated by $\overline{\text{CSi}}$ in the next cycle after accessing the external area indicated by the same $\overline{\text{CSi}}$.


The address bus changes state but the chip select signal does not change state.

Example 4

Not to access any area (nor instruction prefetch generated) in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$.

Neither the address bus nor the chip select signal changes state between these two cycles.

NOTE:

1. These examples show the address bus and chip select signal when accessing areas in two successive cycles. The chip select bus cycle may be extended more than two cycles depending on a combination of these examples.

Shown above is the case where separate bus is selected and the area is accessed for read without wait states. i = 0 to 3, j = 0 to 3 (not including i, however)

Figure 7.2 Example of Address Bus and CSi Signal Output

7.2.4 Read and Write Signals

When the data bus is 16-bit width, the read and write signals can be chosen to be a combination of \overline{RD} , \overline{WR} and \overline{BHE} or a combination of \overline{RD} , \overline{WRL} and \overline{WRH} by using the PM02 bit in the PM0 register. When the data bus is 8-bit width, use a combination of \overline{RD} , \overline{WR} and \overline{BHE} .

Table 7.3 shows the operation of \overline{RD} , \overline{WRL} , and \overline{WRH} signals. Table 7.4 shows the operation of \overline{RD} , \overline{WR} , and \overline{BHE} signals.

Table 7.3 Operation of RD, WRL and WRH Signals

Data Bus Width	RD	WRL	WRH	Status of External Data Bus
16 Bits	L	Н	Н	Read data
(BYTE pin	Н	L	Н	Write 1 byte of data to an even address
input = L)	Н	Н	L	Write 1 byte of data to an odd address
	Н	L	L	Write data to both even and odd addresses

Table 7.4 Operation of RD, WR and BHE Signals

Data Bus Width	RD	WR	BHE	A0	Status of External Data Bus
16 Bits	Н	L	L	Н	Write 1 byte of data to an odd address
(BYTE pin	L	Н	L	Н	Read 1 byte of data from an odd address
input = L)	Н	L	Н	L	Write 1 byte of data to an even address
	L	Н	Н	L	Read 1 byte of data from an even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8 Bits	Н	L	Not used	H to L	Write 1 byte of data
(BYTE pin input = H)	L	Н	Not used	H to L	Read 1 byte of data

7.2.5 ALE Signal

The ALE signal latches the address when accessing the multiplexed bus space. Latch the address when the ALE signal falls. Figure 7.3 shows the ALE signal, address bus and data bus.

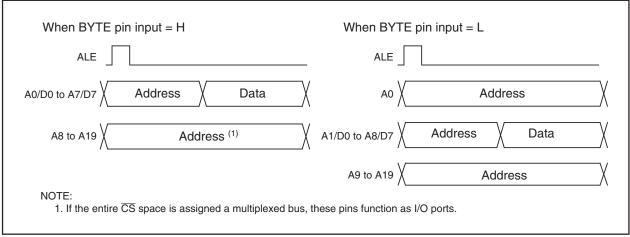


Figure 7.3 ALE Signal, Address Bus, Data Bus

M16C/6N Group (M16C/6NL, M16C/6NN)

7.2.6 The RDY Signal

This signal is provided for accessing external devices which need to be accessed at low speed. If input on the $\overline{\text{RDY}}$ pin is asserted low at the last falling edge of BCLK of the bus cycle, one wait state is inserted in the bus cycle. While in a wait state, the following signals retain the state in which they were when the $\overline{\text{RDY}}$ signal was acknowledged.

A0 to A19, D0 to D15, CS0 to CS3, RD, WRL, WRH, WR, BHE, ALE, HLDA

Then, when the input on the RDY pin is detected high at the falling edge of BCLK, the remaining bus cycle is executed. Figure 7.4 shows example in which the wait state was inserted into the read cycle by the RDY signal. To use the RDY signal, set the corresponding bit (CS3W to CS0W bits) in the CSR register to "0" (with wait state). When not using the RDY signal, the RDY pin must be pulled-up.

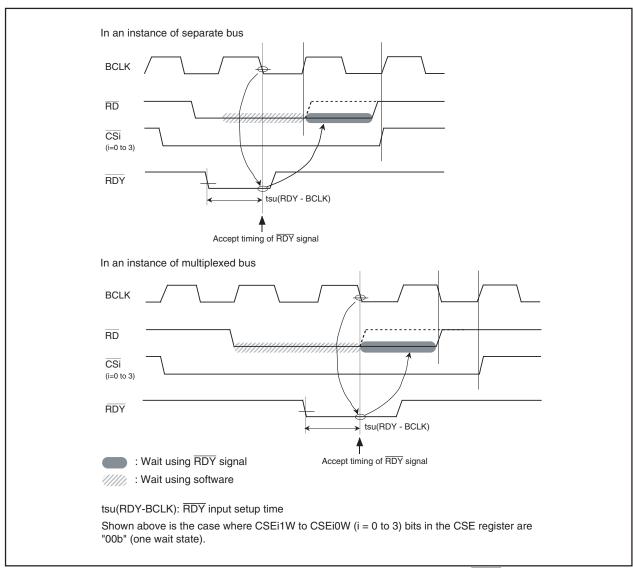


Figure 7.4 Example in which Wait State was Inserted into Read Cycle by RDY Signal

M16C/6N Group (M16C/6NL, M16C/6NN)

7.2.7 HOLD Signal

This signal is used to transfer control of the bus from CPU or DMAC to an external circuit. When the input on HOLD pin is pulled low, the microcomputer is placed in a hold state after the bus access then in process finishes. The microcomputer remains in a hold state while the HOLD pin is held low, during which time the HLDA pin outputs a low-level signal.

Table 7.5 shows the microcomputer status in the hold state.

Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence (see Figure 7.5 Bus-using Priorities). However, if the CPU is accessing an odd address in word units, the DMAC cannot gain control of the bus during two separate accesses.

HOLD > DMAC > CPU

Figure 7.5 Bus-using Priorities

Table 7.5 Microcomputer Status in Hold State

Item		Status	
BCLK		Output	
A0 to A19, D0 to D15, CS0 to CS3	B, RD, WRL, WRH,	High-impedance	
WR, BHE			
I/O Ports	P0, P1, P3, P4 ⁽¹⁾	High-impedance	
	P6 to P10	Maintains status when hold signal is received	
HLDA	-	Output "L"	
Internal Peripheral Circuits		ON (but watchdog timer stops (2))	
ALE Signal		Undefined	

NOTES:

- 1. When I/O port function is selected.
- 2. The watchdog timer does not stop when the PM22 bit in the PM2 register is set to "1" (the count source for the watchdog timer is the on-chip oscillator clock).

7.2.8 BCLK Output

If the PM07 bit in the PM0 register is set to "0" (output enable), a clock with the same frequency as that of the CPU clock is output as BCLK from the BCLK pin. Refer to 8.2 CPU Clock and Peripheral Function Clock.

Table 7.6 shows the pin functions for each processor mode.

Table 7.6 Pin Functions for Each Processor Mode

Process	sor Mode	Memory E	xpansion Mode	or Microproces	sor Mode	Memory Expansion Mode		
PM05 to PM04 Bits		OOb (separate bus)		01b (CS2 is for multiplexed bus and others are for separate bus) 10b (CS1 is for multiplexed bus and others are for separate bus)		11b (multiplexed bus for the entire space) (1)		
Data Bus	Width	8 bits	16 bits	8 bits	16 bits	8 bits		
BYTE Pin		"H"	"L"	"H"	"L"	"H"		
P0_0 to P	0_7	D0 to D7		D0 to D7 (4)		I/O ports		
P1_0 to P	71_7	I/O ports	D8 to D15	I/O ports	D8 to D15 (4)	I/O ports		
P2_0		A0		A0/D0 (2)	A0	A0/D0		
P2_1 to P	2_7	A1 to A7		A1 to A7	A1 to A7	A1 to A7/D1 to D7		
				/D1 to D7 (2)	/D0 to D6 (2)			
P3_0		A8		,	A8/D7 (2)	A8		
P3_1 to P	23_3	A9 to A11			1	I/O ports		
P3_4	PM11 = 0	A12 to A15				I/O ports		
to P3_7	PM11 = 1	I/O ports				1		
P4_0	PM06 = 0	A16 to A19				I/O ports		
to P4_3	PM06 = 1	I/O ports						
P4_4	CS0 = 0	I/O ports						
	CS0 = 1	CS0						
P4_5	CS1 = 0	I/O ports						
	CS1 = 1	CS1						
P4_6	CS2 = 0	I/O ports						
	CS2 = 1	CS2	CS2					
P4_7	CS3 = 0	I/O ports						
	CS3 = 1	CS3						
P5_0	PM02 = 0	WR						
	PM02 = 1	_ (3)	WRL	_ (3)	WRL	_ (3)		
P5_1	PM02 = 0	BHE						
	PM02 = 1	_ (3)	WRH	_ (3)	WRH	_ (3)		
P5_2	•	RD						
P5_3		BCLK						
P5_4		HLDA						
P5_5		HOLD						
P5_6		ALE						
P5_7		RDY						

I/O ports: Function as I/O ports or peripheral function I/O pins.

- 1. For setting the PM01 to PM00 bits to "01b" (memory expansion mode) and the PM05 to PM04 bits to "11b" (multiplexed bus assigned to the entire \overline{CS} space), apply "H" to the BYTE pin (external data bus is an 8-bit width). While the CNVSS pin is held "H" (VCC), do not rewrite the PM05 to PM04 bits to "11b" after reset. If the PM05 to PM04 bits are set to "11b" during memory expansion mode, P3_1 to P3_7 and P4_0 to P4_3 become I/O ports, in which case the accessible area for each \overline{CS} is 256 bytes.
- 2. In separate bus mode, these pins serve as the address bus.
- 3. If the data bus is 8-bit width, make sure the PM02 bit is set to "0" (RD, BHE, WR).
- 4. When accessing the area that uses a multiplexed bus, these pins output an indeterminate value during a write.

Under development

7.2.9 External Bus Status When Internal Area Accessed

Table 7.7 shows the external bus status when the internal area is accessed.

Table 7.7 External Bus Status When Internal Area Accessed

Ite	m	SFR Accessed	Internal ROM, Internal RAM Accessed
A0 to A19		Address output	Maintain status before accessed address
			of external area or SFR
D0 to D15	When read	High-impedance	High-impedance
	When write	Output data	Undefined
RD, WR, W	RL, WRH	RD, WR, WRL, WRH output	Output "H"
BHE		BHE output	Maintain status before accessed status of
			external area or SFR
CS0 to CS3		Output "H"	Output "H"
ALE		Output "L"	Output "L"

7.2.10 Software Wait

Software wait states can be inserted by using the PM17 bit in the PM1 register, the CS0W to CS3W bits in the CSR register, and the CSE register. The SFR area is unaffected by these control bits. This area is always accessed in 2 BCLK or 3 BCLK cycles as determined by the PM20 bit in the PM2 register. See **Table 7.8 Bit and Bus Cycle Related to Software Wait** for details.

To use the RDY signal, set the corresponding CS3W to CS0W bit to "0" (with wait state). Figure 7.6 shows the CSE register. Table 7.8 shows the software wait related bits and bus cycles. Figures 7.7 and 7.8 show the typical bus timings using software wait.

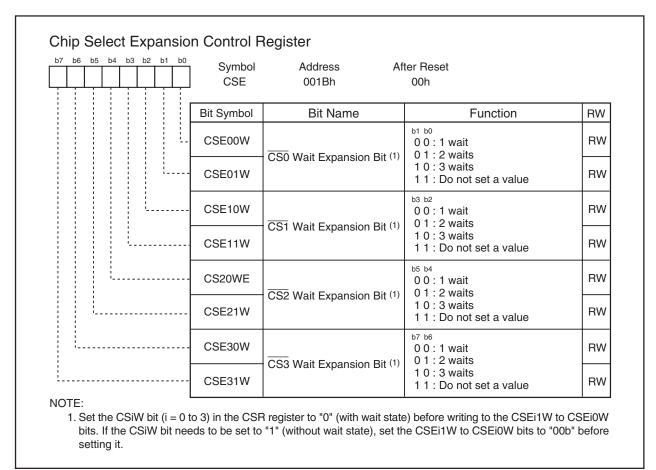


Figure 7.6 CSE Register

Table 7.8 Software Wait Related Bits and Bus Cycles

Area	Bus Mode	PM2 Register PM20 Bit	PM1 Register PM17 Bit ⁽⁵⁾	CSR Register CS3W Bit (1) CS2W Bit (1) CS1W Bit (1) CS0W Bit (1)	CSE Register CS31W to CS30W Bits CS21W to CS20W Bits CS11W to CS10W Bits CS01W to CS00W Bits	Wait	Bus Cycle
SFR	_	0	_	_	_	_	3 BCLK cycles (4)
	_	1	_	-	_	_	2 BCLK cycles (4)
Internal	_	_	0	-	_	No wait	1 BCLK cycle (3)
ROM, RAM	_	_	1	_	_	1 wait	2 BCLK cycles
External	Separate	_	0	1	00b	No wait	1 BCLK cycle (read)
Area	Bus						2 BCLK cycles (write)
		_	_	0	00b	1 wait	2 BCLK cycles (3)
		_	_	0	01b	2 waits	3 BCLK cycles
		_	_	0	10b	3 waits	4 BCLK cycles
		_	1	0	00b	1 wait	2 BCLK cycles
	Multiplexed	_	_	0	00b	1 wait	3 BCLK cycles
	Bus (2)	_	_	0	01b	2 waits	3 BCLK cycles
		_	_	0	10b	3 waits	4 BCLK cycles
		_	1	0	00b	1 wait	3 BCLK cycles

- 1. To use the RDY signal, set this bit to "0".
- 2. To access in multiplexed bus mode, set the corresponding bit of CS0W to CS3W to "0" (with wait state).
- 3. After reset, the PM17 bit is set to "0" (without wait state), all of the CS0W to CS3W bits are set to "0" (with wait state), and the CSE register is set to "00h" (one wait state for CS0 to CS3). Therefore, the internal RAM and internal ROM are accessed with no wait state, and all external areas are accessed with one wait state.
- 4. When the selected CPU clock source is the PLL clock, the number of wait cycles can be altered by the PM20 bit in the PM2 register. When using PLL clock over 16 MHz, be sure to set the PM20 bit to "0" (2 wait cycles).
- 5. When the PM17 bit is set to "1" and access an external area, set the CSiW bits (i = 0 to 3) to "0" (with wait sate).

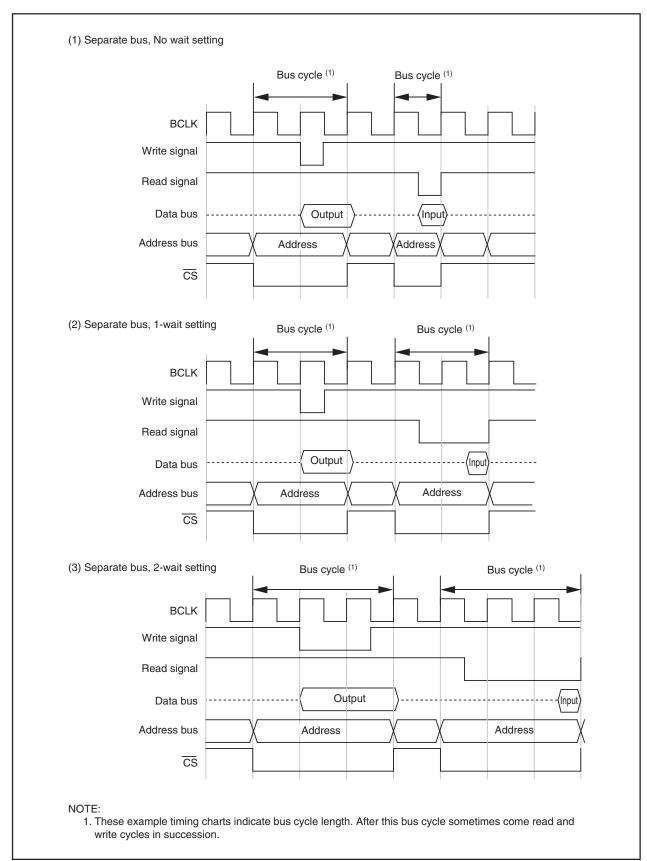


Figure 7.7 Typical Bus Timings Using Software Wait (1)

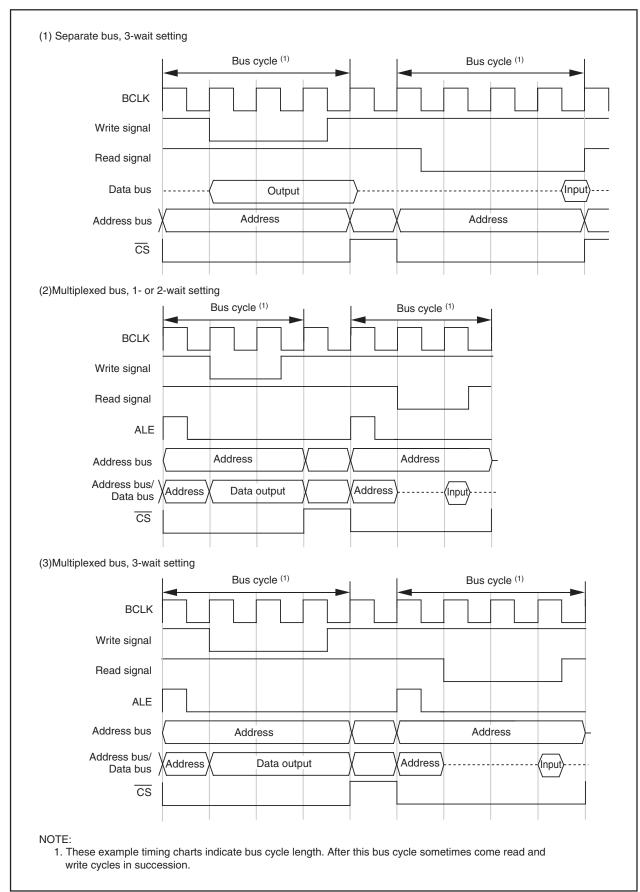


Figure 7.8 Typical Bus Timings Using Software Wait (2)

8. Clock Generating Circuit

8.1 Types of Clock Generating Circuit

Four circuits are incorporated to generate the system clock signal:

- · Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

Table 8.1 lists the clock generating circuit specifications. Figure 8.1 shows the clock generating circuit. Figures 8.2 to 8.8 show the clock-related registers.

Table 8.1 Clock Generating Circuit Specifications

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer
Use of Clock	CPU clock source Peripheral function clock source	CPU clock source Clock source of Timer A, B	 CPU clock source Peripheral function clock source CPU and peripheral function clock sources when the main clock stops oscillating 	CPU clock source Peripheral function clock source
Clock	0 to 16 MHz	32.768 kHz	About 1 MHz	16 MHz, 20 MHz,
Frequency				24 MHz
Usable	Ceramic oscillator	 Crystal oscillator 	-	-
Oscillator	•Crystal oscillator			
Pins to Connect	XIN, XOUT	XCIN, XCOUT	-	-
Oscillator				
Oscillation Stop and Re-Oscillation Detection Function	Available	Available	Available	Available
Oscillation Status After Reset	Oscillating	Stopped	Stopped	Stopped
Other	Externally derived clo	ock can be input	-	-

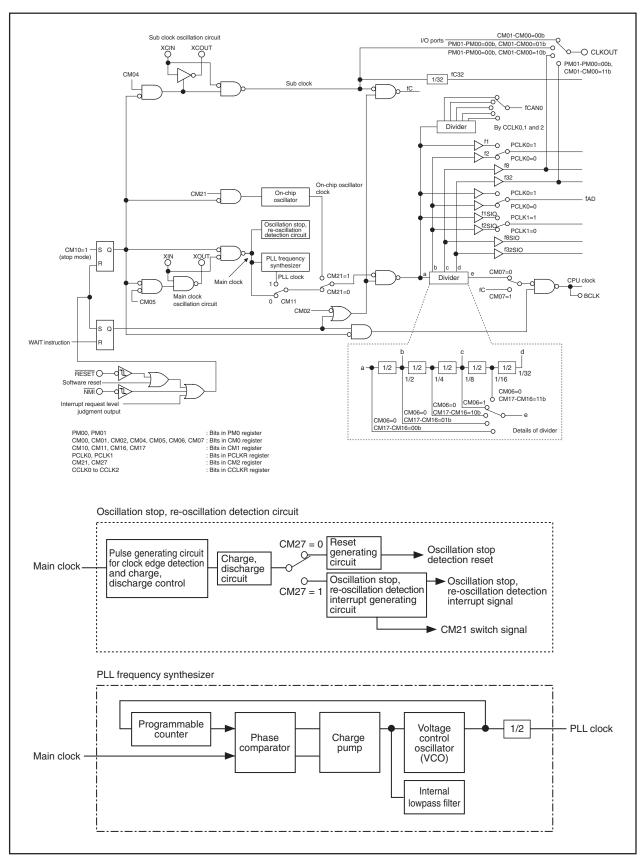
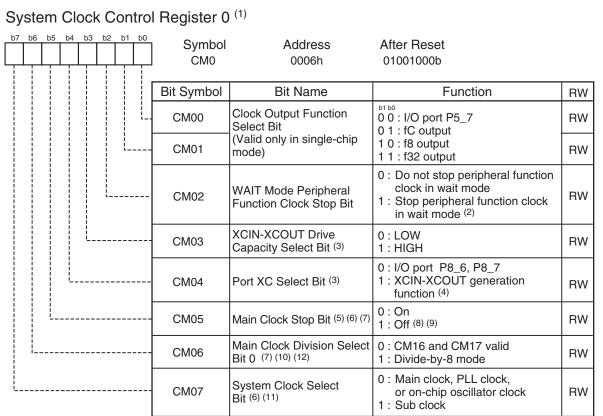
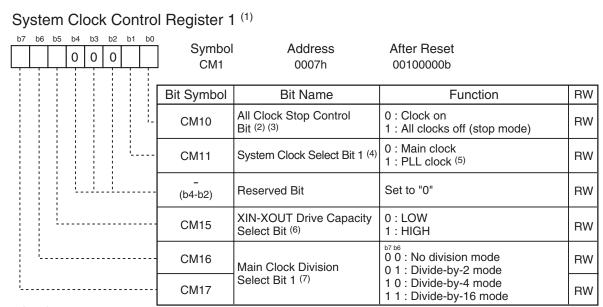




Figure 8.1 Clock Generating Circuit

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. The fC32 clock does not stop. During low-speed or low power dissipation mode, do not set this bit to "1" (peripheral clock turned off when in wait mode).
- 3. The CM03 bit is set to "1" (high) while the CM04 bit is set to "0" (I/O port) or when entered to stop mode.
- 4. To use a sub clock, set this bit to "1". Also make sure ports P8_6 and P8_7 are directed for input, with no pull-ups.
- 5. This bit is provided to stop the main clock when the low power dissipation mode or on-chip oscillator low power dissipation mode is selected. This bit cannot be used for detection as to whether the main clock stopped or not. To stop the main clock, set bits in the following order.
 - (1) Set the CM07 bit to "1" (sub clock select) or the CM21 bit in the CM2 register to "1" (on-chip oscillator select) with the sub clock stably oscillating.
 - (2) Set the CM20 bit in the CM2 register to "0" (oscillation stop, re-oscillation detection function disabled).
 - (3) Set the CM05 bit to "1" (stop).
- 6. To use the main clock as the clock source for the CPU clock, set bits in the following order.
 - (1) Set the CM05 bit to "0" (oscillate)
 - (2) Wait until the main clock oscillation stabilizes.
 - (3) Set the CM11, CM21 and CM07 bits all to "0".
- 7. When the CM21 bit = 0 (on-chip oscillator turned off) and the CM05 bit = 1 (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" (drive capability High).
- 8. During external clock input, set the CM05 bit to "0" (oscillate).
- 9. When the CM05 bit is set to "1", the XOUT pin goes "H". Furthermore, because the internal feedback resistor remains connected, the XIN pin is pulled "H" to the same level as XOUT via the feedback resistor.
- 10. When entering stop mode from high- or medium-speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, the CM06 bit is set to "1" (divide-by-8 mode).
- 11. After setting the CM04 bit to "1" (XCIN-XCOUT oscillator function), wait until the sub clock oscillates stably before switching the CM07 bit from "0" to "1" (sub clock).
- 12. To return from on-chip oscillator mode to high-speed or medium-speed mode, set the CM06 and CM15 bits both to "1".

Figure 8.2 CM0 Register

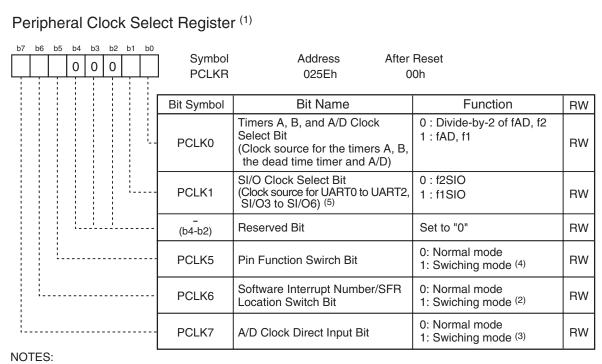

- NOTES:
 - 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable)
 - 2. If the CM10 bit is "1" (stop mode), XOUT goes "H" and the internal feedback resistor is disconnected. The XCIN and XCOUT pins are placed in the high-impedance state. When the CM11 bit is set to "1" (PLL clock), or the CM20 bit in the CM2 register is set to "1" (oscillation stop, re-oscillation detection function enabled), do not set the CM10 bit to "1".
 - 3. When the PM22 bit in the PM2 register is set to "1" (watchdog timer count source is on-chip oscillator clock), writing to the CM10 bit has no effect.
 - 4. Effective when the CM07 bit is "0" and the CM21 bit is "0".
 - 5. After setting the PLC07 bit in the PLC0 register to "1" (PLL operation), wait until tsu(PLL) elapses before setting the CM11 bit to "1" (PLL clock).
 - 6. When entering stop mode from high- or medium-speed mode, or when the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the CM15 bit is set to "1" (drive capability high).
 - 7. Effective when the CM06 bit is "0" (CM16 and CM17 bits enabled).

Figure 8.3 CM1 Register

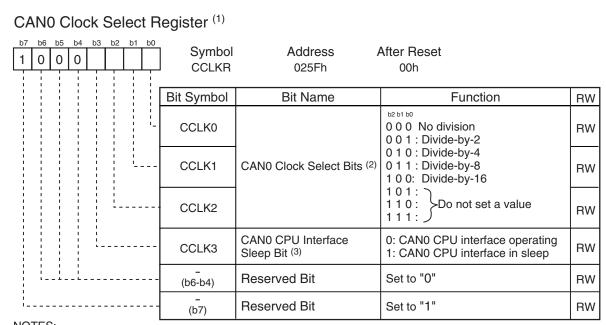

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. The CM20, CM21 and CM27 bits do not change at oscillation stop detection reset.
- 3. Set the CM20 bit to "0" (disable) before entering stop mode. After exiting stop mode, set the CM20 bit back to "1" (enable).
- 4. Set the CM20 bit to "0" (disable) before setting the CM05 bit in the CM0 register.
- 5. When the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), and the CPU clock source is the main clock, the CM21 bit is set to "1" (on-chip oscillator clock) if the main clock stop is detected.
- 6. If the CM20 bit is "1" and the CM23 bit is "1" (main clock turned off), do not set the CM21 bit to "0".
- 7. Effective when the CM07 bit in the CM0 register is "0".
- 8. Where the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), and the CM11 bit is "1" (the CPU clock source is PLL clock), the CM21 bit remains unchanged even when main clock stop is detected. If the CM22 bit is "0" under these conditions, an oscillation stop, re-oscillation detection interrupt request is generated at main clock stop detection; it is, therefore, necessary to set the CM21 bit to "1" (on-chip oscillator clock) inside the interrupt routine.
- 9. This bit is set to "1" when the main clock is detected to have stopped and when the main clock is detected to have restarted oscillating. When this bit changes state from "0" to "1", an oscillation stop and re-oscillation detection interrupt request is generated. Use this bit in an interrupt routine to discriminate the causes of interrupts between the oscillation stop and re-oscillation detection interrupt and the watchdog timer interrupt. This bit is set to "0" by writing "0" in a program. (Writing "1" has no effect. Nor is it set to "0" by an oscillation stop, re-oscillation detection interrupt request acknowledged.)
 - If an oscillation stop or a re-oscillation is detected when the CM22 bit = 1, no oscillation stop and re-oscillation detection interrupt requests are generated.
- 10. Read the CM23 bit in an oscillation stop and re-oscillation detection interrupt handling routine to determine the main clock status.
- 11. When the CM21 bit = 0 (on-chip oscillator turned off) and the CM05 bit = 1 (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" (drive capability High).

Figure 8.4 CM2 Register

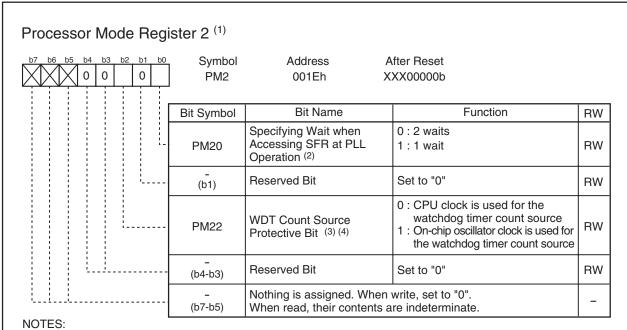

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. If this bit is set to "1", the software interrupt number and SFR location can be changed as follows.
 - (1) Software interrupt number of the key input interrupt in the vector table can be changed from 14 to 13.
 - No.13 is changed from the CANO error interrupt to the CANO error/key input interrupt.
 - No.14 is changed from the A/D/key input interrupt to the A/D interrupt.
 - (2) Address of the KUPIC register in the SFR can be changed from 004Eh to 004Dh.
 - Address 004Dh is changed from the C01ERRIC register to the C01ERRIC/KUPIC register.
 - Address 004Eh is changed from the ADIC/KUPIC register to the ADIC register.
- 3. When this bit = 1, the A/D clock is set to divide-by-1 of fAD mode regardless of whether the PCLK0 bit is set.
- 4. When the PCLK5 bit and the SM43 bit in the S4C register = 1, the pin function of SI/O4 can be changed as follows.
 - P8_0/TA4OUT/U/(SIN4)
 - P7_5/TA2IN/W/(SOUT4)
 - P7_4/TA2OUT/W/(CLK4)
- 5. SI/O5 and SI/O6 are only in the 128-pin version.

Figure 8.5 PCLKR Register

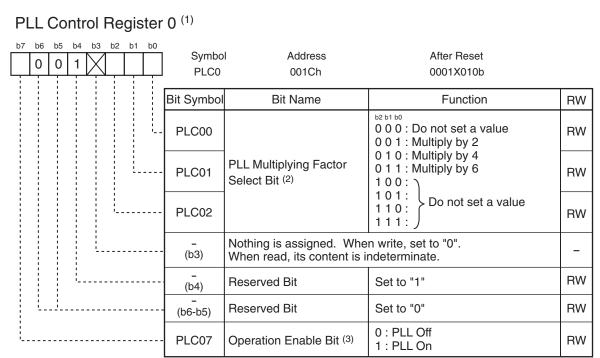

- NOTES:
 - 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (Write enabled).
 - 2. Set to this bit after setting the C1CTLR register to "0020h", and set only when the Reset bit in the C0CTLR register = 1 (Reset/Initialization mode).
 - 3. Before setting this bit to "1", set the Sleep bit in the COCTLR register to "1" (Sleep mode enabled).

Figure 8.6 CCLKR Register

- 1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable).
- 2. The PM20 bit become effective when the PLC07 bit in the PLC0 register is set to "1" (PLL on). Change the PM20 bit when the PLC07 bit is set to "0" (PLL off). Set the PM20 bit t "0" (2 waits) when PLL clock > 16MHz.
- 3. Once this bit is set to "1", it cannot be set to "0" in a program.
- 4. Setting the PM22 bit to "1" results in the following conditions:
 - The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count source.
 - The CM10 bit in the CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
 - The watchdog timer does not stop when in wait mode or hold state.

Figure 8.7 PM2 Register

- 1. Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- 2. This bit can only be modified when the PLC07 bit = 0 (PLL turned off). The value once written to this bit cannot be modified.
- 3. Before setting this bit to "1", set the CM07 bit in the CM0 register to "0" (main clock), set the CM17 to CM16 bits in the CM1 register to "00b" (main clock undivided mode), and set the CM06 bit in the CM0 register to "0" (CM16 and CM17 bits enable).

Figure 8.8 PLC0 Register

The following describes the clocks generated by the clock generating circuit.

8.1.1 Main Clock

The main clock is generated by the main clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillator circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 8.9 shows the examples of main clock connection circuit.

After reset, the main clock divided by 8 is selected for the CPU clock.

The power consumption in the chip can be reduced by setting the CM05 bit in the CM0 register to "1" (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to a sub clock or on-chip oscillator clock. In this case, XOUT goes "H". Furthermore, because the internal feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor. Note, that if an externally generated clock is fed into the XIN pin, the main clock cannot be turned off by setting the CM05 bit to "1" unless the sub clock is selected as a CPU clock. If necessary, use an external circuit to turn off the clock.

During stop mode, all clocks including the main clock are turned off. Refer to 8.4 Power Control.

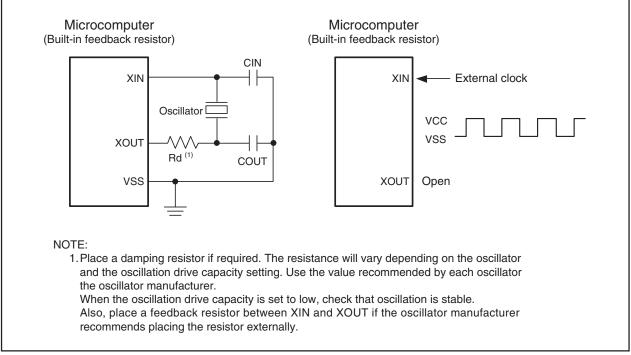


Figure 8.9 Examples of Main Clock Connection Circuit

8.1.2 Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources. In addition, an fC clock with the same frequency as that of the sub clock can be output from the CLKOUT pin.

The sub clock oscillator circuit is configured by connecting a crystal resonator between the XCIN and XCOUT pins. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin. Figure 8.10 shows the examples of sub clock connection circuit.

After reset, the sub clock is turned off. At this time, the feedback resistor is disconnected from the oscillator circuit.

To use the sub clock for the CPU clock, set the CM07 bit in the CM0 register to "1" (sub clock) after the sub clock becomes oscillating stably.

During stop mode, all clocks including the sub clock are turned off. Refer to 8.4 Power Control.

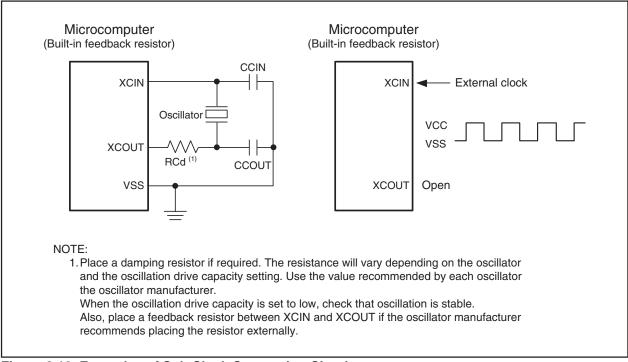


Figure 8.10 Examples of Sub Clock Connection Circuit

8.1.3 On-chip Oscillator Clock

This clock, approximately 1 MHz, is supplied by a on-chip oscillator. This clock is used as the clock source for the CPU and peripheral function clocks. In addition, if the PM22 bit in the PM2 register is "1" (on-chip oscillator clock for the watchdog timer count source), this clock is used as the count source for the watchdog timer (refer to **11.1 Count Source Protective Mode**).

After reset, the on-chip oscillator is turned off. It is turned on by setting the CM21 bit in the CM2 register to "1" (on-chip oscillator clock), and is used as the clock source for the CPU and peripheral function clocks, in place of the main clock. If the main clock stops oscillating when the CM20 bit in the CM2 register is "1" (oscillation stop, re-oscillation detection function enabled) and the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), the on-chip oscillator automatically starts operating, supplying the necessary clock for the microcomputer.

8.1.4 PLL Clock

The PLL clock is generated by a PLL frequency synthesizer. This clock is used as the clock source for the CPU and peripheral function clocks. After reset, the PLL clock is turned off. The PLL frequency synthesizer is activated by setting the PLC07 bit to "1" (PLL operation). When the PLL clock is used as the clock source for the CPU clock, wait a fixed period of tsu(PLL) for the PLL clock to be stable, and then set the CM11 bit in the CM1 register to "1".

Before entering wait mode or stop mode, be sure to set the CM11 bit to "0" (CPU clock source is the main clock). Furthermore, before entering stop mode, be sure to set the PLC07 bit in the PLC0 register to "0" (PLL stops). Figure 8.11 shows the procedure for using the PLL clock as the clock source for the CPU. The PLL clock frequency is determined by the equation below. When the PLL clock frequency is 16 MHz or more, set the PM20 bit in the PM2 register to "0" (2 waits).

PLL clock frequency = f(XIN) × (multiplying factor set by the PLC02 to PLC00 bits in the PLC0 register) (However, PLL clock frequency = 16 MHz, 20 MHz or 24 MHz)

The PLC02 to PLC00 bits can be set only once after reset. Table 8.2 shows the example for setting PLL clock frequencies.

Table 8.2 Example for Setting PLL Clock Frequencies

XIN (MHz)	PLC02	PLC01	PLC00	Multiply Factor	PLL Clock (MHz) (1)		
8	0	0	1	2	16		
4	0	1	0	4	16		
10	0	0	1	2	20		
5	0	1	0	4	20		
12	0	0	1	2			
6	0	1	0	4	24		
4	0	1	1	6			

NOTE:

1. PLL clock frequency = 16 MHz, 20 MHz or 24 MHz

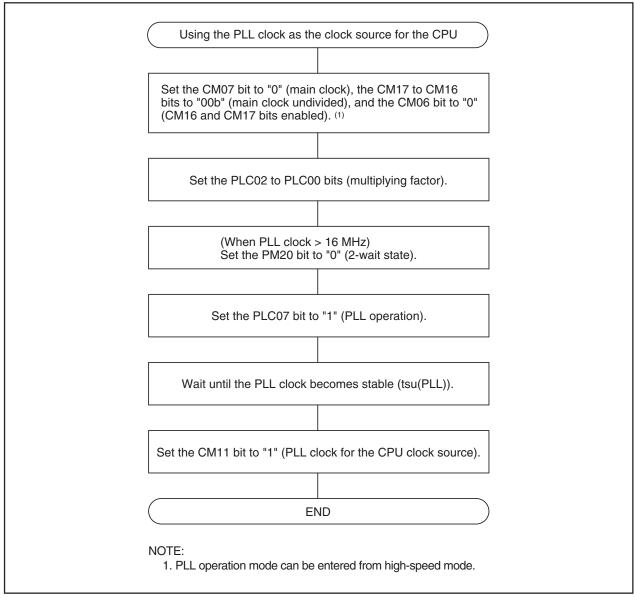


Figure 8.11 Procedure to Use PLL Clock as CPU Clock Source

8.2 CPU Clock and Peripheral Function Clock

Two type clocks: CPU clock to operate the CPU and peripheral function clocks to operate the peripheral functions.

8.2.1 CPU Clock and BCLK

These are operating clocks for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock, sub clock, on-chip oscillator clock or the PLL clock.

If the main clock or on-chip oscillator clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register to select the divide-by-n value.

When the PLL clock is selected as the clock source for the CPU clock, the CM06 bit should be set to "0" and the CM17 to CM16 bits to "00b" (undivided).

After reset, the main clock divided by 8 provides the CPU clock.

During memory expansion or microprocessor mode, a BCLK signal with the same frequency as the CPU clock can be output from the BCLK pin by setting the PM07 bit of PM0 register to "0" (output enabled). Note that when entering stop mode from high- or medium-speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, or when the CM05 bit in the CM0 register is set to "1" (main clock turned off) in low-speed mode, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode).

8.2.2 Peripheral Function Clock (f1, f2, f8, f32, f1SIO, f2SIO, f8SIO, f32SIO, fAD, fCAN0, fC32)

These are operating clocks for the peripheral functions.

Two of these, fi (i = 1, 2, 8, 32) and fiSIO are derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by i. The clock fi is used for timers A and B, and fiSIO is used for serial Interface. The f8 and f32 clocks can be output from the CLKOUT pin.

The fAD clock is produced from the main clock, PLL clock or on-chip oscillator clock, and is used for the A/D converter.

The fCAN0 clock is derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by 1 (undivided), 2, 4, 8 or 16, and is used for the CAN module.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to "1" (peripheral function clock turned off during wait mode), or when the microcomputer is in low power dissipation mode, the fi, fiSIO, fAD, and fCAN0 clocks are turned off (1).

The fC32 clock is derived from the sub clock, and is used for timers A and B. This clock can be used when the sub clock is activated.

NOTE

1. fCAN0 clock stops at "H" in CAN0 sleep mode.

8.3 Clock Output Function

During single-chip mode, the f8, f32 or fC clock can be output from the CLKOUT pin. Use the CM01 to CM00 bits in the CM0 register to select.

8.4 Power Control

Normal operation mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operation mode in this document.

8.4.1 Normal Operation Mode

Normal operation mode is further classified into seven sub modes.

In normal operation mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock, sub clock or PLL clock, allow a sufficient wait time in a program until it becomes oscillating stably.

Note that operation modes cannot be changed directly from low-speed or low power dissipation mode to on-chip oscillator or on-chip oscillator low power dissipation mode. Nor can operation modes be changed directly from on-chip oscillator or on-chip oscillator low power dissipation mode to low-speed or low power dissipation mode. Where the CPU clock source is changed from the on-chip oscillator to the main clock, change the operation mode to the medium-speed mode (divide-by-8 mode) after the clock was divided by 8 (the CM06 bit in the CM0 register was set to "1") in the on-chip oscillator mode.

8.4.1.1 High-speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

8.4.1.2 PLL Operation Mode

The main clock multiplied by 2, 4 or 6 provides the PLL clock, and this PLL clock serves as the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B. PLL operation mode can be entered from high speed mode. If PLL operation mode is to be changed to wait or stop mode, first go to high speed mode before changing.

8.4.1.3 Medium-speed Mode

The main clock divided by 2, 4, 8 or 16 provides the CPU clock. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

8.4.1.4 Low-speed Mode

The sub clock provides the CPU clock. The main clock is used as the clock source for the peripheral function clock when the CM21 bit in the CM2 register is set to "0" (on-chip oscillator turned off), and the on-chip oscillator clock is used when the CM21 bit is set to "1" (on-chip oscillator oscillating).

The fC32 clock can be used as the count source for timers A and B.

8.4.1.5 Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fC32 clock can be used as the count source for timers A and B.

Simultaneously when this mode is selected, the CM06 bit in the CM0 register becomes "1" (divide-by-8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divide-by-8) mode is to be selected when the main clock is operated next.

8.4.1.6 On-chip Oscillator Mode

The on-chip oscillator clock divided by 1 (undivided), 2, 4, 8 or 16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. If the sub clock is activated, fC32 can be used as the count source for timers A and B. When the operation mode is returned to the high- and medium-speed modes, set the CM06 bit in the CM0 register to "1" (divide-by-8 mode).

8.4.1.7 On-chip Oscillator Low Power Dissipation Mode

The main clock is turned off after being placed in on-chip oscillator mode. The CPU clock can be selected like in the on-chip oscillator mode. The on-chip oscillator clock is the clock source for the peripheral function clocks. If the sub clock is activated, fC32 can be used as the count source for timers A and B.

Table 8.3 lists the setting clock related bit and modes.

Table 8.3 Setting Clock Related Bit and Modes

		CM2 Register	CM1 B	egister	CM0 Register			
Modes		CM21	CM11	CM17, CM16	CM07	CM06	CM05	CM04
			CIVITI	,	Olvio7	CIVIOO	Olvios	Olvio4
PLL Oper	ation Mode	0	1	00b	0	0	0	-
High-Spe	eed Mode	0	0	00b	0	0	0	-
Medium-	Divide-by-2	0	0	01b	0	0	0	-
Speed	Divide-by-4	0	0	10b	0	0	0	-
Mode	Divide-by-8	0	0	-	0	1	0	-
	Divide-by-16	0	0	11b	0	0	0	-
Low-Spe	Low-Speed Mode		0	-	1	-	0	1
Low Pow	er er	0	0	-	1	1 ⁽¹⁾	1 ⁽¹⁾	1
Dissipati	on Mode							
On-chip	Divide-by-1	1	0	00b	0	0	0	-
Oscillator	Divide-by-2	1	0	01b	0	0	0	-
Mode	Divide-by-4	1	0	10b	0	0	0	-
	Divide-by-8	1	0	-	0	1	0	-
	Divide-by-16	1	0	11b	0	0	0	-
On-chip Low power Mode	Oscillator Dissipation	1	0	(NOTE 2)	0	(NOTE 2)	1	-

^{-: &}quot;0" or "1"

- 1. When the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the mode goes to low power dissipation mode and the CM06 bit is set to "1" (divide-by-8 mode) simultaneously.
- 2. The divide-by-n value can be selected the same way as in on-chip oscillator mode.

8.4.2 Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. However, if the PM22 bit in the PM2 register is "1" (on-chip oscillator clock for the watchdog timer count source), the watchdog timer remains active. Because the main clock, sub clock and on-chip oscillator clock all are on, the peripheral functions using these clocks keep operating.

8.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit in the CM0 register is "1" (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO, fAD and fCAN0 clocks are turned off when in wait mode, with the power consumption reduced that much. However, fC32 remains on.

8.4.2.2 Entering Wait Mode

The microcomputer is placed into wait mode by executing the WAIT instruction.

When the CM11 bit = 1 (CPU clock source is the PLL clock), be sure to set the CM11 bit in the CM1 register to "0" (CPU clock source is the main clock) before going to wait mode. The power consumption of the chip can be reduced by setting the PLC07 bit in the PLC0 register to "0" (PLL stops).

8.4.2.3 Pin Status During Wait Mode

Table 8.4 lists the pin status during wait mode.

Table 8.4 Pin Status During Wait Mode

Pin		Memory Expansion Mode Microprocessor Mode	Single-chip Mode		
A0 to A19,	D0 to D15,	Retains status before wait mode	Does not become a bus control pin		
CS0 to CS3	3, BHE				
RD, WR, W	VRL, WRH	"H"			
HLDA, BCL	LK	"H"			
ALE		"L"			
I/O ports		Retains status before wait mode	Retains status before wait mode		
CLKOUT W	Vhen fC selected	Does not become a CLKOUT pin	Does not stop		
When f8, f32			•CM02 bit = 0: Does not stop		
selected			•CM02 bit = 1: Retains status before		
			wait mode		

8.4.2.4 Exiting Wait Mode

The microcomputer is moved out of wait mode by a hardware reset, NMI interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of wait mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "000b" (interrupt disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If the CM02 bit is "0" (peripheral function clocks not turned off during wait mode), peripheral function interrupts can be used to exit wait mode. If the CM02 bit is "1" (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table 8.5 lists the interrupts to exit wait mode.

Table 8.5 Interrupts to Exit Wait Mode

Interrupt	CM02 Bit = 0	CM02 Bit = 1
NMI Interrupt	Can be used	Can be used
Serial Interface Interrupt	Can be used when operating with	Can be used when operating with
	internal or external clock	external clock
Key Input Interrupt	Can be used	Can be used
A/D Conversion Interrupt	Can be used in one-shot mode or	- (Do not use)
	single sweep mode	
Timer A Interrupt	Can be used in all modes	Can be used in event counter mode
Timer B interrupt		or when the count source is fc32
INT Interrupt	Can be used	Can be used
CAN0 Wake-up Interrupt	Can be used in CAN sleep mode	Can be used in CAN sleep mode

If the microcomputer is to be moved out of wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

- (1) Set the ILVL2 to ILVL0 bits in the interrupt control register, for peripheral function interrupts used to exit wait mode.
 - The ILVL2 to ILVL0 bits in all other interrupt control registers, for peripheral function interrupts not used to exit wait mode, are set to "000b" (interrupt disable).
- (2) Set the I flag to "1".
- (3) Start operating the peripheral functions used to exit wait mode.

 When the peripheral function interrupt is used, an interrupt routine is performed as soon as an interrupt request is acknowledged and the CPU clock is supplied again.

When the microcomputer exits wait mode by the peripheral function interrupt, the CPU clock is the same clock as the CPU clock executing the WAIT instruction.

M16C/6N Group (M16C/6NL, M16C/6NN)

8.4.3 Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to VCC is VRAM or more, the internal RAM is retained.

However, the peripheral functions clocked by external signals keep operating.

Table 8.6 lists the interrupts to stop mode and use conditions.

Table 8.6 Interrupts to Stop Mode and Use Conditions

Interrupt	Condition				
NMI Interrupt	Can be used				
Key Input Interrupt	Can be used				
INT Interrupt	Can be used				
Timer A Interrupt	Can be used				
Timer B interrupt	(when counting external pulses in event counter mode)				
Serial Interface Interrupt	Can be used (when external clock is selected)				
CAN0/1 Wake-up Interrupt	Can be used (when CAN sleep mode is selected)				

8.4.3.1 Entering Stop Mode

The microcomputer is placed into stop mode by setting the CM10 bit in the CM1 register to "1" (all clocks turned off). At the same time, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit in the CM1 register is set to "1" (main clock oscillator circuit drive capability high).

Before entering stop mode, set the CM20 bit in the CM2 register to "0" (oscillation stop, re-oscillation detection function disabled).

Also, if the CM11 bit in the CM1 register is "1" (PLL clock for the CPU clock source), set the CM11 bit to "0" (main clock for the CPU clock source) and the PLC07 bit in the PLC0 register to "0" (PLL turned off) before entering stop mode.

8.4.3.2 Pin Status in Stop Mode

Table 8.7 lists the pin status in stop mode.

Table 8.7 Pin Status in Stop Mode

Pin		Memory Expansion Mode Microprocessor Mode	Single-chip Mode	
A0 to A19	9, D0 to D15,	Retains status before stop mode	Does not become a bus control pin	
CS0 to C	S3, BHE			
RD, WR,	WRL, WRH	"H"		
HLDA, B	CLK	"H"		
ALE		indeterminate		
I/O ports		Retains status before stop mode	Retains status before stop mode	
CLKOUT	When fC selected	Does not become a CLKOUT pin	"H"	
	When f8, f32		Retains status before stop mode	
	selected			

8.4.3.3 Exiting Stop Mode

Stop mode is exited by a hardware reset, NMI interrupt or peripheral function interrupt.

When the hardware reset or NMI interrupt is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "000b" (interrupt disabled) before setting the CM10 bit in the CM1 register to "1".

When the peripheral function interrupt is used to exit stop mode, set the CM10 bit to "1" after the following settings are completed.

- (1) The ILVL2 to ILVL0 bits in the interrupt control registers, for the peripheral function interrupt used to exit stop mode, must have larger value than that of the RLVL2 to RLVL0 bits.
 - The ILVL2 to ILVL0 bits in all other interrupt control registers, for the peripheral function interrupts which are not used to exit stop mode, must be set to "000b" (interrupt disabled).
- (2) Set the I flag to "1".
- (3) Start operation of peripheral function being used to exit wait mode.
 When exiting stop mode by the peripheral function interrupt, the interrupt routine is performed when an interrupt request is generated and the CPU clock is supplied again.

When stop mode is exited by the peripheral function interrupt or NMI interrupt, the CPU clock source is as follows, in accordance with the CPU clock source setting before the microcomputer had entered stop mode.

- When the sub clock is the CPU clock before entering stop mode: Sub clock
- When the main clock is the CPU clock source before entering stop mode: Main clock divided by 8
- When the on-chip oscillator clock is the CPU clock source before entering stop mode:

On-chip oscillator clock divided by 8

Figure 8.12 shows the state transition from normal operation mode to stop mode and wait mode. Figure 8.13 shows the state transition in normal operation mode.

Table 8.8 shows a state transition matrix describing allowed transition and setting. The vertical line shows current state and horizontal line show state after transition.

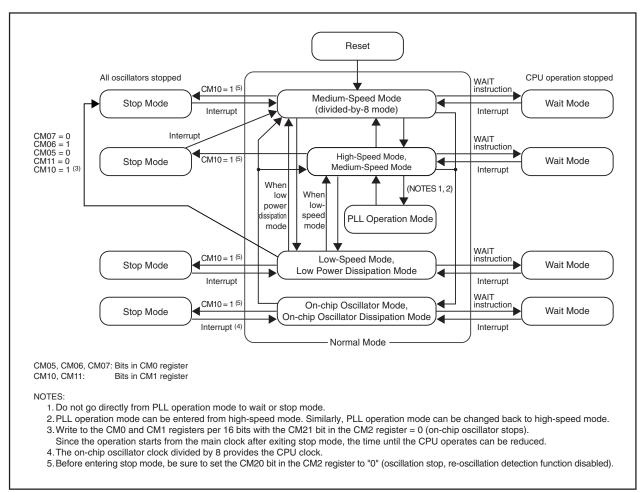


Figure 8.12 State Transition to Stop Mode and Wait Mode

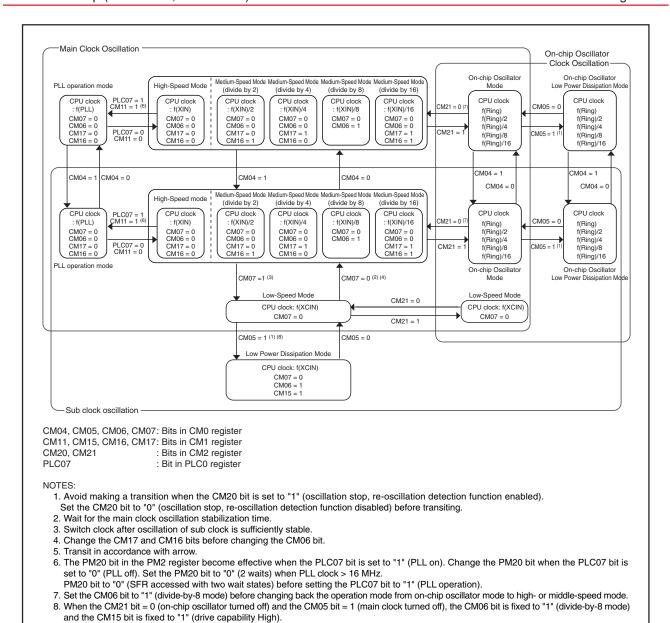


Figure 8.13 State Transition in Normal Operation Mode

Table 8.8 Allowed Transition and Setting (9)

				(State after	r transitior	1		
		High-Speed Mode, Medium-Speed Mode	Low-Speed Mode ⁽²⁾	Low Power Dissipation Mode	PLL Operation Mode (2)	On-chip Oscillator Mode	On-chip Oscillator Low Power Dissipation Mode	Stop Mode	Wait Mode
	High-Speed Mode, Medium-Speed Mode	(NOTE 8)	(9) ⁽⁷⁾	_	(13) (3)	(15)	_	(16) (1)	(17)
	Low-Speed Mode (2)	(8)		(11) (1) (6)	_	_	_	(16) (1)	(17)
	Low Power Dissipation Mode	-	(10)		-	-	-	(16) (1)	(17)
ıt state	PLL Operation Mode (2)	(12) (3)	-	-		-	-	-	-
Current state	On-chip Oscillator Mode	(14) (4)	-	_	_	(NOTE 8)	(11) (1)	(16) (1)	(17)
	On-chip Oscillator Low Power Dissipation Mode	I –	-	-	_	(10)	(NOTE 8)	(16) (1)	(17)
	Stop Mode	(18) (5)	(18)	(18)	_	(18) (5)	(18) (5)		_
	Wait Mode	(18)	(18)	(18)	_	(18)	(18)	-	

^{-:} Cannot transit

- Avoid making a transition when the CM20 bit = 1 (oscillation stop, reoscillation detection function enabled). Set the CM20 bit to "0" (oscillation stop, re-oscillation detection function disabled) before transiting.
- On-chip oscillator clock oscillates and stops in low-speed mode. In this mode, the on-chip oscillator can be used as peripheral function clock. Sub clock oscillates and stops in PLL operation mode. In this mode, sub clock can be used as peripheral function clock.
- PLL operation mode can only be entered from and changed to high-speed mode.
- 4. Set the CM06 bit to "1" (divide-by-8 mode) before transiting from on-chip oscillator mode to high- or medium-speed mode.
- 5. When exiting stop mode, the CM06 bit is set to "1" (divide-by-8 mode).
- If the CM05 bit is set to "1" (main clock stop), then the CM06 bit is set to "1" (divide-by-8 mode).
- 7. A transition can be made only when sub clock is oscillating.
- 8. State transitions within the same mode (divide-by-n values changed or sub clock oscillation turned on or off) are shown in the table below.

		Su	b Clo	ck Os	cillati	ng	Su	b Clo	ck Tu	rned	Off
		No Division	Divide- by-2	Divide- by-4	Divide- by-8	Divide- by-16	No Division	Divide- by-2	Divide- by-4	Divide- by-8	Divide- by-16
ting	No Division		(4)	(5)	(7)	(6)	(1)	_	-	_	-
Sub Clock Oscillating	Divide-by-2	(3)		(5)	(7)	(6)	-	(1)	-	-	-
) Š	Divide-by-4	(3)	(4)		(7)	(6)	-	_	(1)	-	-
응	Divide-by-8	(3)	(4)	(5)		(6)	-	-	-	(1)	-
Sub	Divide-by-16	(3)	(4)	(5)	(7)		-	_	-	-	(1)
₩	No Division	(2)	_	_	-	_		(4)	(5)	(7)	(6)
rned	Divide-by-2	-	(2)	_	-	_	(3)		(5)	(7)	(6)
关 급	Divide-by-4	-	-	(2)	-	_	(3)	(4)		(7)	(6)
Sub Clock Turned Off	Divide-by-8	_	_	_	(2)	_	(3)	(4)	(5)		(6)
gns	Divide-by-16	_	_	_	_	(2)	(3)	(4)	(5)	(7)	

9. ():setting method. See right table.

	Setting	Operation
(1)	CM04=0	Sub clock turned off
(2)	CM04=1	Sub clock oscillating
(3)	CM06=0 CM17=0 CM16=0	CPU clock no division mode
(4)	CM06=0 CM17=0 CM16=1	CPU clock divide-by-2 mode
(5)	CM06=0 CM17=1 CM16=0	CPU clock divide-by-4 mode
(6)	CM06=0 CM17=1 CM16=1	CPU clock divide-by-16 mode
(7)	CM06=1	CPU clock divide-by-8 mode
(8)	CM07=0	Main clock, PLL clock or on-chip oscillator clock selected
(9)	CM07=1	Sub clock selected
(10)	CM05=0	Main clock oscillating
(11)	CM05=1	Main clock turned off
(12)	PLC07=0 CM11=0	Main clock selected
. ,	PLC07=1 CM11=1	PLL clock selected
,	CM21=0	Main clock or PLL clock selected
. ,	CM21=1	On-chip oscillator clock selected
(16)	CM10=1	Transition to stop mode
,	WAIT instruction	Transition to wait mode
(18)	Hardware interrupt	Exit stop mode or wait mode

CM04, CM05, CM06, CM07: Bits in CM0 register CM10, CM11, CM16, CM17: Bits in CM1 register CM20, CM21 : Bits in CM2 register PLC07 : Bit in PLC0 register

8.5 Oscillation Stop and Re-oscillation Detection Function

The oscillation stop and re-oscillation detection function is such that main clock oscillation circuit stop and re-oscillation are detected. At oscillation stop, re-oscillation detection, reset or oscillation stop, re-oscillation detection interrupt request are generated. Which one is to be generated can be selected using the CM27 bit in the CM2 register.

The oscillation stop and re-oscillation detection function can be enabled or disabled using the CM20 bit in the CM2 register.

Table 8.9 lists a specification overview of the oscillation stop and re-oscillation detection function.

Table 8.9 Specification Overview of Oscillation Stop and Re-oscillation Detection Function

Item	Specification		
Oscillation Stop Detectable Clock and	f(XIN) ≥ 2 MHz		
Frequency Bandwidth			
Enabling Condition for Oscillation Stop	Set CM20 bit to "1" (enable)		
and Re-oscillation Detection Function			
Operation at Oscillation Stop,	•Reset occurs (when CM27 bit = 0)		
Re-oscillation Detection	•Oscillation stop, re-oscillation detection interrupt occurs (when the CM27 bit =1)		

8.5.1 Operation When CM27 Bit = 0 (Oscillation Stop Detection Reset)

Where main clock stop is detected when the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the microcomputer is initialized, coming to a halt (oscillation stop reset; refer to **4. Special Function Register (SFR)**, **5. Reset**).

This status is reset with hardware reset. Also, even when re-oscillation is detected, the microcomputer can be initialized and stopped; it is, however, necessary to avoid such usage (During main clock stop, do not set the CM20 bit to "1" and the CM27 bit to "0").

8.5.2 Operation When CM27 Bit = 1 (Oscillation Stop, Re-oscillation Detection Interrupt)

Where the main clock corresponds to the CPU clock source and the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the system is placed in the following state if the main clock comes to a halt:

- Oscillation stop, re-oscillation detection interrupt request is generated.
- The on-chip oscillator starts oscillation, and the on-chip oscillator clock becomes the clock source for CPU clock and peripheral functions in place of the main clock.
- CM21 bit = 1 (on-chip oscillator clock is the clock source for CPU clock)
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)

Where the PLL clock corresponds to the CPU clock source and the CM20 bit is "1", the system is placed in the following state if the main clock comes to a halt: Since the CM21 bit remains unchanged, set it to "1" (on-chip oscillator clock) inside the interrupt routine.

- Oscillation stop, re-oscillation detection interrupt request is generated.
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)
- CM21 bit remains unchanged

Where the CM20 bit is "1", the system is placed in the following state if the main clock re-oscillates from the stop condition:

- Oscillation stop, re-oscillation detection interrupt request is generated.
- CM22 bit = 1 (main clock re-oscillation detected)
- CM23 bit = 0 (main clock oscillation)
- CM21 bit remains unchanged

M16C/6N Group (M16C/6NL, M16C/6NN)

- The oscillation stop, re-oscillation detection interrupt shares the vector with the watchdog timer interrupt.
 If the oscillation stop, re-oscillation detection and watchdog timer interrupts both are used, read the CM22 bit in an interrupt routine to determine which interrupt source is requesting the interrupt.
- Where the main clock re-oscillated after oscillation stop, the clock source for CPU clock and peripheral function must be switched to the main clock in the program. Figure 8.14 shows the procedure to switch the clock source from the on-chip oscillator to the main clock.
- Simultaneously with oscillation stop, re-oscillation detection interrupt request occurrence, the CM22 bit becomes "1". When the CM22 bit is set at "1", oscillation stop, re-oscillation detection interrupt are disabled. By setting the CM22 bit to "0" in the program, oscillation stop, re-oscillation detection interrupt are enabled.
- If the main clock stops during low speed mode where the CM20 bit is "1", an oscillation stop, re-oscillation detection interrupt request is generated. At the same time, the on-chip oscillator starts oscillating. In this case, although the CPU clock is derived from the sub clock as it was before the interrupt occurred, the peripheral function clocks now are derived from the on-chip oscillator clock.
- To enter wait mode while using the oscillation stop and re-oscillation detection function, set the CM02 bit to "0" (peripheral function clocks not turned off during wait mode).
- Since the oscillation stop and re-oscillation detection function is provided in preparation for main clock stop due to external factors, set the CM20 bit to "0" (oscillation stop, re-oscillation detection function disabled) where the main clock is stopped or oscillated in the program, that is where the stop mode is selected or the CM05 bit is altered.
- This function cannot be used if the main clock frequency is 2 MHz or less. In that case, set the CM20 bit to "0".

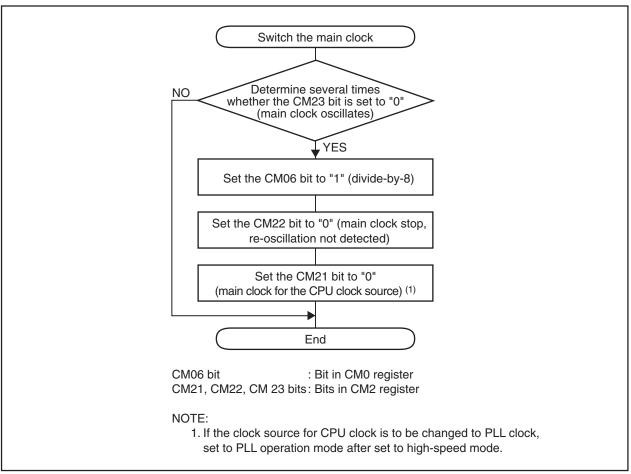
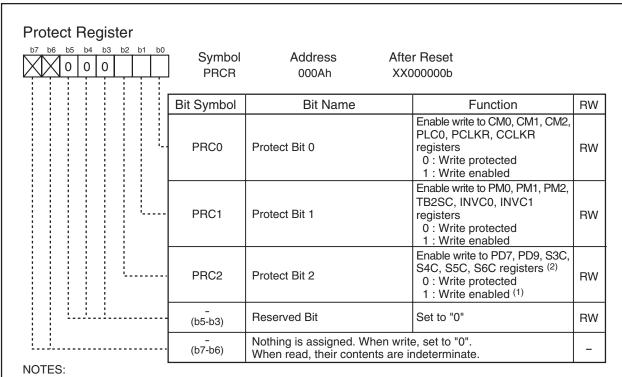


Figure 8.14 Procedure to Switch Clock Source from On-chip Oscillator to Main Clock

9. Protection


In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily. Figure 9.1 shows the PRCR register. The following lists the registers protected by the PRCR register.

- The PRC0 bit protects the CM0, CM1, CM2, PLC0, PCLKR and CCLKR registers;
- The PRC1 bit protects the PM0, PM1, PM2, TB2SC, INVC0 and INVC1 registers;
- The PRC2 bit protects the PD7, PD9, S3C, S4C, S5C and S6C registers (1).

NOTE:

1. The S5C and S6C registers are only in the 128-pin version.

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be set to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction. The PRC0 and PRC1 bits are not automatically set to "0" by writing to any address. They can only be set to "0" in a program.

1. The PRC2 bit is set to "0" by writing to any address after setting it to "1". Other bits are not set to "0" by writing to any address, and must therefore be set in a program.

Figure 9.1 PRCR Register

^{2.} The S5C and S6C registers are only in the 128-pin version.

M16C/6N Group (M16C/6NL, M16C/6NN)

10.1 Type of Interrupts

Figure 10.1 shows the types of interrupts.

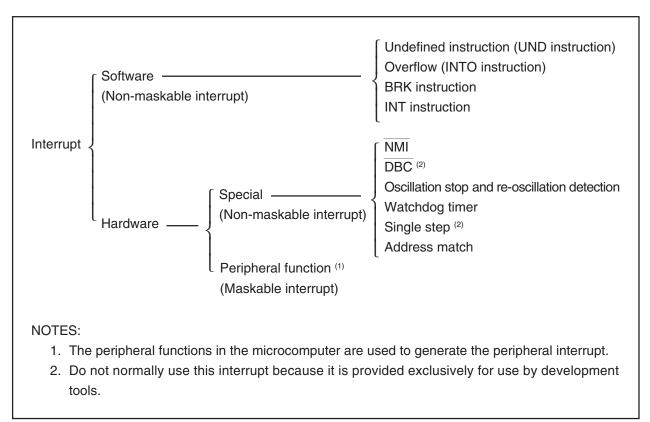


Figure 10.1 Interrupts

- Maskable Interrupt:

 An interrupt which can be enabled (disabled) by the interrupt enable flag
 (I flag) or whose interrupt priority can be changed by priority level.
- Non-Maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority **cannot be changed** by priority level.

10.2 Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

10.2.1 Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

10.2.2 Overflow Interrupt

An overflow interrupt occurs when executing the INTO instruction with the O flag in the FLG register set to "1" (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

10.2.3 BRK Interrupt

A BRK interrupt occurs when executing the BRK instruction.

10.2.4 INT Instruction Interrupt

An INT instruction interrupt occurs when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 1 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is set to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

10.3 Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral function interrupts.

10.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

10.3.1.1 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. For details, refer to 10.7 $\overline{\text{NMI}}$ Interrupt.

10.3.1.2 DBC Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development tools.

10.3.1.3 Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to **11. Watchdog Timer**.

10.3.1.4 Oscillation Stop and Re-oscillation Detection Interrupt

Generated by the oscillation stop and re-oscillation detection function. For details about the oscillation stop and re-oscillation detection function, refer to **8. Clock Generating Circuit**.

10.3.1.5 Single-Step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development tools.

10.3.1.6 Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMAD0 to RMAD3 registers that corresponds to one of the AIER0 or AIER1 bit in the AIER register or the AIER20 or AIER21 bit in the AIER2 register which is "1" (address match interrupt enabled). For details, refer to **10.10 Address Match Interrupt**.

10.3.2 Peripheral Function Interrupts

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupt is a maskable interrupt. See **Table 10.2 Relocatable Vector Tables** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

10.4 Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 10.2 shows the interrupt vector.

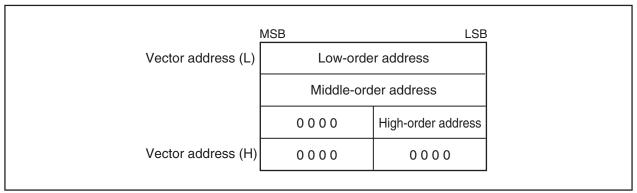


Figure 10.2 Interrupt Vector

10.4.1 Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDCh to FFFFFh. Table 10.1 lists the fixed vector tables. In the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.

Table 10.1 Fixed Vector Tables

Interrupt Source	Vector table Addresses Address (L) to Address (H)	Reference
Undefined Instruction (UND instruction)	FFFDChto FFFDFh	M16C/60, M16C/20, M16C/Tiny
Overflow (INTO instruction)	FFFE0h to FFFE3h	Series Software Manual
BRK Instruction (2)	FFFE4h to FFFE7h	
Address Match	FFFE8h to FFFEBh	10.10 Address Match Interrupt
Single Step (1)	FFFECh to FFFEFh	
Oscillation Stop and Re-oscillation Detection,	FFFF0h to FFFF3h	8. Clock Generating Circuit
Watchdog Timer		11. Watchdog Timer
DBC (1)	FFFF4h to FFFF7h	
NMI	FFFF8h to FFFFBh	10.7 NMI Interrupt
Reset	FFFFCh to FFFFFh	5. Reset

NOTES:

- 1. Do not normally use this interrupt because it is provided exclusively for use by development tools.
- 2. If the contents of address FFFE7h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.

10.4.2 Relocatable Vector Tables

The 256 bytes beginning with the start address set in the INTB register comprise a relocatable vector table area. Table 10.2 lists the relocatable vector tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Table 10.2 Relocatable Vector Tables

Interrupt Source	Vector Address (1) Address (L) to Address (H)	Software Interrupt Number	Reference
BRK Instruction (2)	+0 to +3 (0000h to 0003h)	0	M16C/60, M16C/20 16C/Tiny
	,		Series Software Manual
CAN0 Wake-up (10)	+4 to +7 (0004h to 0007h)	1	19. CAN Module
CAN0 Successful Reception	+8 to +11 (0008h to 000Bh)	2	
CAN0 Successful Transmission	+12 to +15 (000Ch to 000Fh)	3	
ĪNT3	+16 to +19 (0010h to 0013h)	4	10.6 INT Interrupt
Timer B5, SI/O5 (11)	+20 to +23 (0014h to 0017h)	5	13. Timers
Timer B4, UART1 Bus Collision Detection (3) (9)	+24 to +27 (0018h to 001Bh)	6	15. Serial Interface
Timer B3, UART0 Bus Collision Detection (4) (9)	+28 to +31 (001Ch to 001Fh)	7	
SIO4, INT5 (5)	+32 to +35 (0020h to 0023h)	8	15. Serial Interface
SIO3, INT4 (6)	+36 to +39 (0024h to 0027h)	9	10.6 INT Interrupt
UART2 Bus Collision Detection (9)	+40 to +43 (0028h to 002Bh)	10	15. Serial Interface
DMA0	+44 to +47 (002Ch to 002Fh)	11	12. DMAC
DMA1	+48 to +51 (0030h to 0033h)	12	
CAN0 Error (10) (16)	+52 to +55 (0034h to 0037h)	13	19. CAN Module
A/D, Key Input (7) (16)	+56 to +59 (0038h to 003Bh)	14	16. A/D Convertor, 10.8 Key Input Interrupt
UART2 Transmission, NACK2 (8)	+60 to +63 (003Ch to 003Fh)	15	15. Serial Interface
UART2 Reception, ACK2 (8)	+64 to +67 (0040h to 0043h)	16	
UART0 Transmission, NACK0 (8)	+68 to +71 (0044h to 0047h)	17	
UART0 Reception, ACK0 (8)	+72 to +75 (0048h to 004Bh)	18	
UART1 Transmission, NACK1 (8)	+76 to +79 (004Ch to 004Fh)	19	
UART1 Reception, ACK1 (8)	+80 to +83 (0050h to 0053h)	20	
Timer A0	+84 to +87 (0054h to 0057h)	21	13. Timers
Timer A1	+88 to +91 (0058h to 005Bh)	22	
Timer A2, INT7 (12)	+92 to +95 (005Ch to 005Fh)	23	13. Timers
Timer A3, INT6 (13)	+96 to +99 (0060h to 0063h)	24	10.6 INT Interrupt
Timer A4	+100 to +103 (0064h to 0067h)	25	13. Timers
Timer B0, SI/O6 (14)	+104 to +107 (0068h to 006Bh)	26	13. Timers, 15. Serial Interface
Timer B1, INT8 (15)	+108 to +111 (006Ch to 006Fh)	27	13. Timers, 10.6 INT Interrupt
Timer B2	+112 to +115 (0070h to 0073h)	28	13. Timers
INT0	+116 to +119 (0074h to 0077h)	29	10.6 INT Interrupt
INT1	+120 to +123 (0078h to 007Bh)	30	
INT2	+124 to +127 (007Ch to 007Fh)	31	
INT Instruction Interrupt (2)	+128 to +131 (0080h to 0083h)	32	M16C/60, M16C/20, 16C/Tiny
	to	to	Series Software Manual
	+252 to + 255 (00FCh to 00FFh)	63	

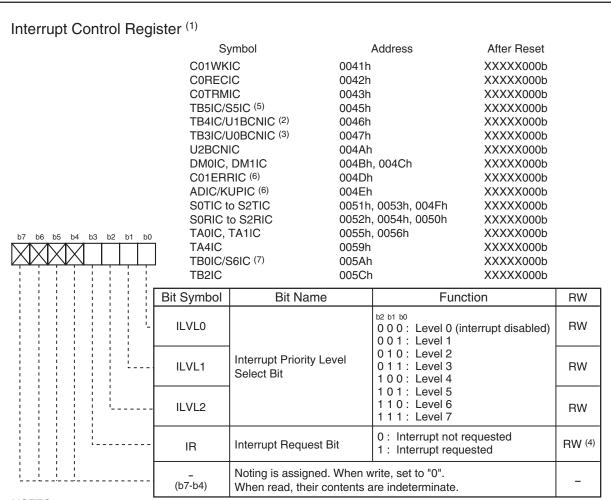
- 1. Address relative to address in INTB.
- 2. These interrupts cannot be disabled using the I flag.
- 3. Use the IFSR07 bit in the IFSR0 register to select.
- 4. Use the IFSR06 bit in the IFSR0 register to select.
- 5. Use the IFSR17 bit in the IFSR1 register to select. When using SI/O4, set the IFSR03 bit in the IFSR0 register to "1" (SI/O4) simultaneously.
- 6. Use the IFSR16 bit in the IFSR1 register to select. When using SI/O3, set the IFSR00 bit in the IFSR0 register to "1" (SI/O3) simultaneously.
- 7. Use the IFSR01 bit in the IFSR0 register to select.
- 8. During I²C mode, NACK and ACK interrupts comprise the interrupt source.
- 9. Bus collision detection: During IE mode, this bus collision detection constitutes the cause of an interrupt.

During I²C mode, a start condition or a stop condition detection constitutes the cause of an interrupt.

- 10. Set the IFSR02 bit in the IFSR0 register to "0".
- 11. Use the IFSR04 bit in the IFSR0 register to select.

SI/O5 is only in the 128-pin version. In the 100-pin version, set the IFSR04 bit to "0" (Timer B5).

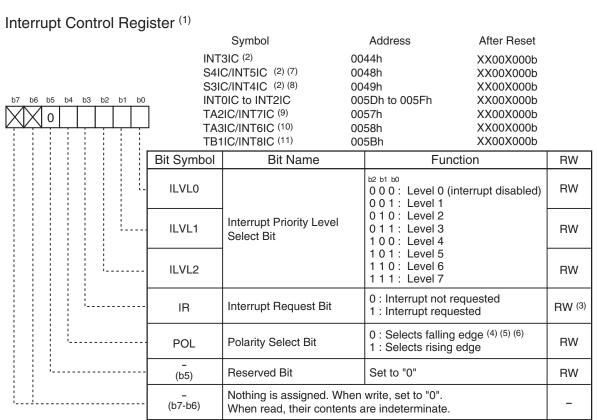
- 12. Use the IFSR20 bit in the IFSR2 register to select.
 - INT7 is only in the 128-pin version. In the 100-pin version, set the IFSR20 bit to "0" (Timer A2).
- 13. Use the IFSR21 bit in the IFSR2 register to select.
 - INT6 is only in the 128-pin version. In the 100-pin version, set the IFSR21 bit to "0" (Timer A3).
- 14. Use the IFSR05 bit in the IFSR0 register to select.
 - SI/O6 is only in the 128-pin version. In the 100-pin version, set the IFSR05 bit to "0" (Timer B0).
- 15. Use the IFSR22 bit in the IFSR2 register to select.
 - INT8 is only in the 128-pin version. In the 100-pin version, set the IFSR22 bit to "0" (Timer B1).
- 16. If the PCLK6 bit in the PCLKR register is set to "1", software interrupt number 13 can be changed to CAN0 error or key input interupt, and software interrupt number 14 can be changed to A/D interrupt. (The software interrupt number of key input is changed from 14 to 13.) Use the IFSR26 bit in the IFSR2 register to select when selecting CAN0 error or key input.



10.5 Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to non-maskable interrupts.

Use the I flag in the FLG register, IPL, and the ILVL2 to ILVL0 bits in the each interrupt control register to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in the each interrupt control register.


Figures 10.3 and 10.4 show the interrupt control registers.

- 1. To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, refer to 23.8 Interrupt.
- 2. Use the IFSR07 bit in the IFSR0 register to select.
- 3. Use the IFSR06 bit in the IFSR0 register to select.
- 4. This bit can only be reset by writing "0" (Do not write "1").
- 5. Use the IFSR04 bit in the IFSR0 register to select.
- The S5IC register is only in the 128-pin version. In the 100-pin version, set the IFSR04 bit to "0" (Timer B5).
- 6. If the PCLK6 bit in the PCLKR register is set to "1", C01ERRIC/KUPIC register can be assigned in an address 004Dh, and the ADIC register can be assigned in an address 004Eh. (SFR location of the KUPIC register is changed from address 004Eh to address 004Dh.)
- 7. Use the IFSR05 bit in the IFSR0 register to select.

 The S6IC register is only in the 128-pin version. In the 100-pin version, set the IFSR05 bit to "0" (Timer B0).

Figure 10.3 Interrupt Control Registers (1)

- 1. To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, refer to 23.8 Interrupt.
- 2. When the BYTE pin is low and the processor mode is memory expansion or microprocessor mode, set the ILVL2 to ILVL0 bits in the INT5IC to INT3IC registers to "000b" (interrupt disabled).
- 3. This bit can only be reset by writing "0" (Do not write "1").
- 4. If the IFSR10 to IFSR15 bits in the IFSR1 register and the IFSR23 to IFSR25 bits in the IFSR2 register are "1" (both edges), set the POL bit in the INTOIC to INT8IC register to "0" (falling edge). INT6IC to INT8IC registers are in the 128-pin version.
- 5. Set the POL bit in the S3IC register to "0" (falling edge) when the IFSR00 bit in the IFSR0 register = 1 and the IFSR16 bit in the IFSR1 register = 0 (SI/O3 selected).
- 6. Set the POL bit in the S4IC register to "0" (falling edge) when the IFSR03 bit in the IFSR0 register = 1 and the IFSR17 bit in the IFSR1 register = 0 (SI/O4 selected).
- 7. Use the IFSR17 bit in the IFSR1 register to select.
- 8. Use the IFSR16 bit in the IFSR1 register to select.
- 9. Use the IFSR20 bit in the IFSR2 register to select.
 - The INT7IC register is only in the 128-pin version. In the 100-pin version, set the IFSR20 bit to "0" (Timer A2).
- 10. Use the IFSR21 bit in the IFSR2 register to select.
 - The INT6IC register is only in the 128-pin version. In the 100-pin version, set the IFSR21 bit to "0" (Timer A3).
- 10. Use the IFSR22 bit in the IFSR2 register to select.
 - The INT8IC register is only in the 128-pin version. In the 100-pin version, set the IFSR22 bit to "0" (Timer B1).

Figure 10.4 Interrupt Control Registers (2)

M16C/6N Group (M16C/6NL, M16C/6NN)

10.5.1 I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (enabled) enables the maskable interrupt. Setting the I flag to "0" (disabled) disables all maskable interrupts.

10.5.2 IR Bit

The IR bit is set to "1" (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is set to "0" (interrupt not requested).

The IR bit can be set to "0" in a program. Note that do not write "1" to this bit.

10.5.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.

Table 10.3 shows the settings of interrupt priority levels and Table 10.4 shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- \cdot I flag = 1
- \cdot IR bit = 1
- · interrupt priority level > IPL

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. In no case do they affect one another.

Table 10.3 Settings of Interrupt Priority Levels

	<u> </u>	
ILVL2 to ILVL0 Bits	Interrupt Priority Level Priority Or	
000b	Level 0 (Interrupt disabled)	-
001b	Level 1	Low
010b	Level 2	
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	₩
111b	Level 7	High

Table 10.4 Interrupt Priority Levels Enabled by IPL

LDI	E 11 11 1 1 1 1 1 1
IPL	Enabled Interrupt Priority Levels
000b	Interrupt levels 1 and above are enabled
001b	Interrupt levels 2 and above are enabled
010b	Interrupt levels 3 and above are enabled
011b	Interrupt levels 5 and above are enabled
100b	Interrupt levels 5 and above are enabled
101b	Interrupt levels 6 and above are enabled
110b	Interrupt levels 7 and above are enabled
111b	All maskable interrupts are disabled

10.5.4 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt request is generated during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt request is generated during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below. Figure 10.5 shows time required for executing the interrupt sequence.

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 000000h. Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register (1) within the CPU.
- (3) The I, D and U flags in the FLG register become as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step interrupt disabled)
 - The U flag is set to "0" (ISP selected)

However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is executed.

- (4) The temporary register within the CPU is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt in IPL is set.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

NOTE:

1. Temporary register cannot be modified by users.

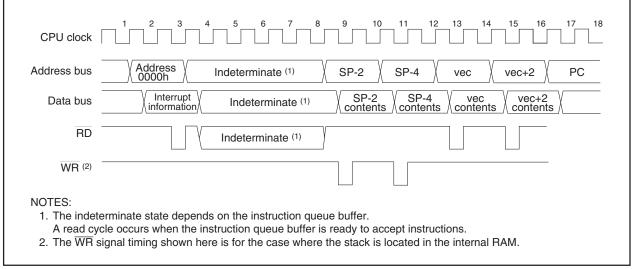
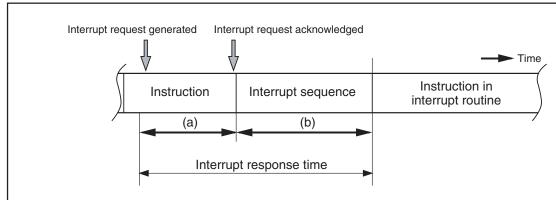



Figure 10.5 Time Required for Executing Interrupt Sequence

10.5.5 Interrupt Response Time

Figure 10.6 shows the interrupt response time. The interrupt response or interrupt acknowledge time denotes a time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of a time from when an interrupt request is generated till when the instruction then executing is completed ((a) on Figure 10.6) and a time during which the interrupt sequence is executed ((b) on Figure 10.6).

- (a) A time from when an interrupt request is generated till when the instruction then executing is completed. The length of this time varies with the instruction being executed. The DIVX instruction requires the longest time, which is equal to 30 cycles (without wait state, the divisor being a register).
- (b) A time during which the interrupt sequence is executed. For details, see the table below. Note, however, that the values in this table must be increased 2 cycles for the DBC interrupt and 1 cycle for the address match and single-step interrupts.

Interrupt Vector Address	SP Value	16-bit Bus, without Wait	8-bit Bus, without Wait
Even	Even	18 cycles	20 cycles
	Odd	19 cycles	
Odd	Even	19 cycles	
	Odd	20 cycles	

Figure 10.6 Interrupt response time

10.5.6 Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 10.5 is set in the IPL. Table 10.5 shows the IPL values of software and special interrupts when they are accepted.

Table 10.5 IPL Level that is Set to IPL When A Software or Special Interrupt is Accepted

Interrupt Sources	Value that is Set to IPL
Oscillation Stop and Re-oscillation Detection, Watchdog Timer, NMI	7
Software, Address Match, DBC, Single-Step	Not changed

10.5.7 Saving Registers

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits in the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved. Figure 10.7 shows the stack status before and after an interrupt request is accepted.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

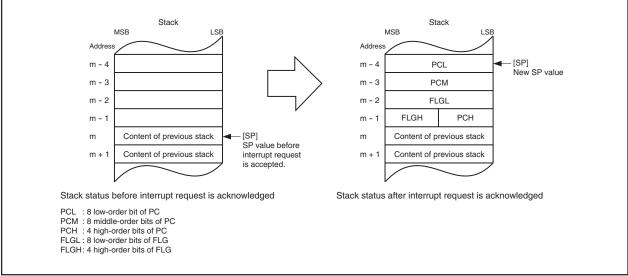


Figure 10.7 Stack Status Before and After Acceptance of Interrupt Request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the SP ⁽¹⁾, at the time of acceptance of an interrupt request, is even or odd. If the SP (Note) is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 10.8 shows the operation of the saving registers.

NOTE:

1. When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

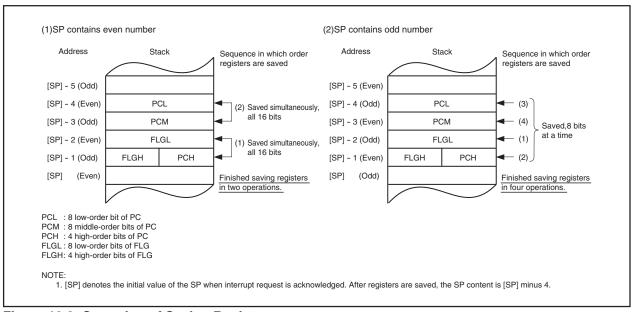


Figure 10.8 Operation of Saving Registers

M16C/6N Group (M16C/6NL, M16C/6NN)

10.5.8 Returning from an Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

Register bank is switched back to the bank used prior to the interrupt sequence by the REIT instruction.

10.5.9 Interrupt Priority

If two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions interrupt), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. Figure 10.9 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

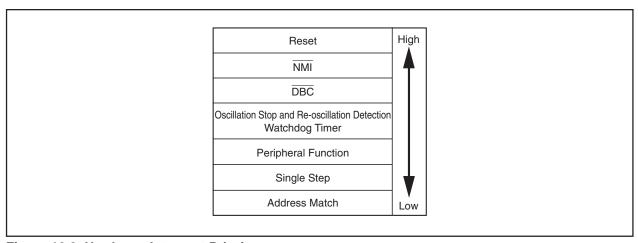


Figure 10.9 Hardware Interrupt Priority

10.5.10 Interrupt Priority Resolution Circuit

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are sampled at the same sampling point.

Figure 10.10 shows the circuit that judges the interrupt priority level.

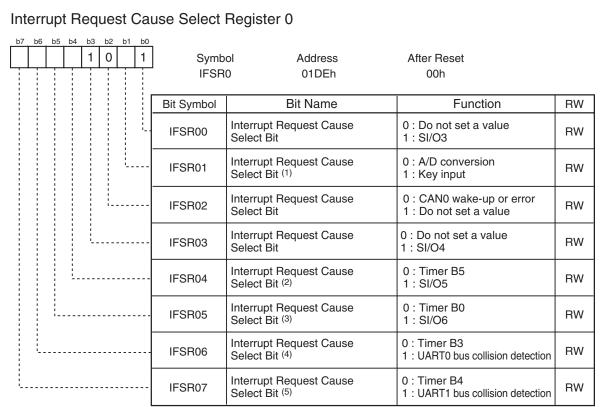
M16C/6N Group (M16C/6NL, M16C/6NN)

Figure 10.10 Interrupts Priority Select Circuit

10.6 INT Interrupt

INTi interrupt (i = 0 to 8) $^{(1)}$ is triggered by the edges of external inputs. The edge polarity is selected using the IFSR10 to IFSR15 bits in the IFSR1 register and the IFSR23 to IFSR25 bits in the IFSR2 register. $\overline{\text{INT4}}$ share the interrupt vector and interrupt control register with SI/O3, $\overline{\text{INT5}}$ share with SI/O4, $\overline{\text{INT6}}$ share with Timer A3, $\overline{\text{INT7}}$ share with Timer A2, $\overline{\text{INT8}}$ share with Timer B1. To use the $\overline{\text{INT4}}$ to $\overline{\text{INT8}}$ interrupts $^{(1)}$, set the each bits as follows.

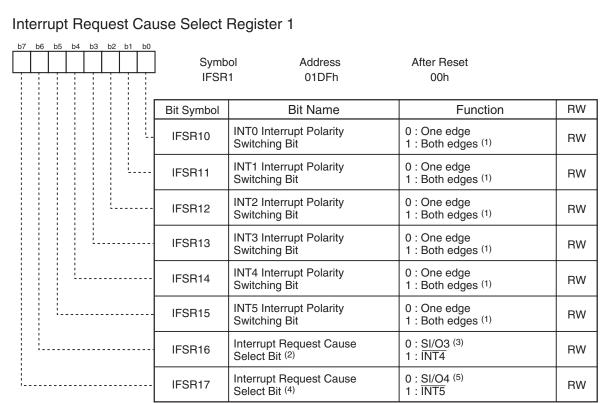
- To use the INT4 interrupt: Set the IFSR16 bit in the IFSR1 register to "1" (INT4).
- To use the INT5 interrupt: Set the IFSR17 bit in the IFSR1 register to "1" (INT5).
- To use the INT6 interrupt: Set the IFSR21 bit in the IFSR2 register to "1" (INT6). (1)
- To use the INT7 interrupt: Set the IFSR20 bit in the IFSR2 register to "1" (INT7). (1)
- To use the INT8 interrupt: Set the IFSR22 bit in the IFSR2 register to "1" (INT8). (1)


After modifying the IFSR16, IFSR17, IFSR20, IFSR21 and IFSR22 bits, set the corresponding IR bit to "0" (interrupt not requested) before enabling the interrupt.

NOTE:

1. INT6 to INT8 interrupts are only in the 128-pin version.

Figures 10.11 to 10.13 show the IFSR0, IFSR1 and IFSR2 registers.



- 1. When the PCLK6 bit in the PCLKR register = 0, A/D conversion and key input share the vector and interrupt control register. When using the A/D conversion interrupt, set the IFSR01 bit to "0" (A/D conversion). When using the key input interrupt, set the IFSR01 bit to "1" (key input).
- 2. Timer B5 and SI/O5 share the vector and interrupt control register. When using the timer B5 interrupt, set the IFSR04 bit to "0" (Timer B5). When using SI/O5 interrupt, set the IFSR04 bit to "1" (SI/O5). The SI/O5 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR04 bit to "0" (Timer B5).
- 3. Timer B0 and SI/O6 share the vector and interrupt control register. When using the timer B0 interrupt, set the IFSR05 bit to "0" (Timer B0). When using SI/O6 interrupt, set the IFSR05 bit to "1" (SI/O6). The SI/O6 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR05 bit to "0" (Timer B0).
- 4. Timer B3 and UART0 bus collision detection share the vector and interrupt control register.

 When using the timer B3 interrupt, set the IFSR06 bit to "0" (Tmer B3).

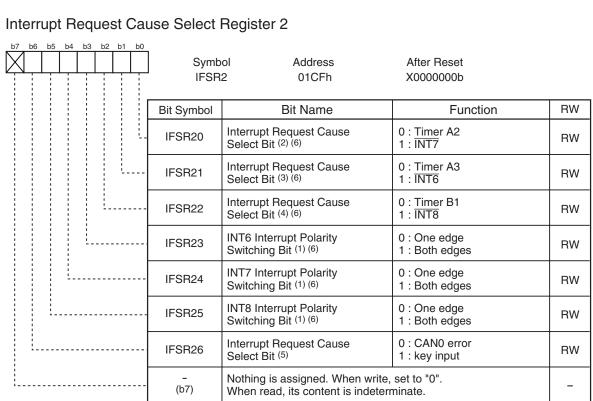

 When using UART0 bus collision detection, set the IFSR06 bit to "1" (UART0 bus collision detection).
- 5. Timer B4 and UART1 bus collision detection share the vector and interrupt control register. When using the timer B4 interrupt, set the IFSR07 bit to "0" (Timer B4). When using UART1 bus collision detection, set the IFSR07 bit to "1" (UART1 bus collision detection).

Figure 10.11 IFSR0 Register

- 1. When setting this bit to "1" (both edges), make sure the POL bit in the INT0IC to INT5IC register is set to "0" (falling edge).
- 2. SI/O3 and INT4 share the vector and interrupt control register. When using SI/O3 interrupt, set the IFSR16 bit to "0" (SI/O3). When using INT4 interrupt, set the IFSR16 bit to "1" (INT4). During memory expansion and microprocessor modes, when the data bus is 16-bit width (BYTE pin is "L"), set this bit to "0" (SI/O3).
- 3. When setting this bit to "0" (SI/O3), make sure the IFSR00 bit in the IFSR0 register is set to "1" (SI/O3) simultaneously. And, make sure the POL bit in the S3IC register is set to "0" (falling edge).
- 4.SI/O4 and INT5 share the vector and interrupt control register. When using SI/O4 interrupt, set the IFSR17 bit to "0" (SI/O4). When using INT5 interrupt, set the IFSR17 bit to "1" (INT5). During memory expansion and microprocessor modes, when the data bus is 16-bit width (BYTE pin is "L"), set this bit to "0" (SI/O4).
- 5. When setting this bit to "0" (SI/O4), make sure the IFSR03 bit in the IFSR0 register is set to "1" (SI/O4) simultaneously. And, make sure the POL bit in the S4IC register is set to "0" (falling edge).

Figure 10.12 IFSR1 Register

- 1. When setting this bit to "1" (both edges), make sure the POL bit in the INT6IC to INT8IC registers are set to "0" (falling edge). The INT6IC to INT8IC registers are only in the 128-pin version.
- In the 100-pin version, make sure the $\overline{\text{INT6}}$ to $\overline{\text{INT8}}$ interrupt polarity switching bitis set to "0" (falling edge).
- 2. Timer A2 and INT7 share the vector and interrupt control register.
 - When using the timer A2 interrupt, set the IFSR20 bit to "0" (Timer A2). When using $\overline{\text{INT7}}$ interrupt, set the IFSR20 bit to "1" ($\overline{\text{INT7}}$).
 - The INT7 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR20 bit to "0" (Timer A2).
- 3. Timer A3 and INT6 share the vector and interrupt control register.
 - When using the timer A3 interrupt, set the IFSR21 bit to "0" (Timer A3). When using $\overline{\text{INT6}}$ interrupt, set the IFSR21 bit to "1" ($\overline{\text{INT6}}$).
 - The INT6 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR21 bit to "0" (Timer A3).
- 4. Timer B1 and INT8 share the vector and interrupt control register.
 - When using the timer B1 interrupt, set the IFSR22 bit to "0" (Timer B1). When using $\overline{\text{INT8}}$ interrupt, set the IFSR22 bit to "1" ($\overline{\text{INT8}}$).
 - The INT8 interrupt is only in the 128-pin version. In the 100-pin version, set the IFSR22 bit to "0" (Timer B1).
- 5. When the PCLK6 bit in the PCLKR register = 1, CAN0 error and key input share the vector and interrupt control register. When using the CAN0 error interrupt, set the IFSR26 bit to "0" (CAN0 error). When using the key input interrupt, set the IFSR26 bit to "1" (key input).
- 6. When using the INT6 to INT8 interrupts, set these bits after settig the PU37 bit in the PUR3 register to "1".

Figure 10.13 IFSR2 Register

10.7 NMI Interrupt

An NMI interrupt request is generated when input on the NMI pin changes state from high to low. The NMI interrupt is a non-maskable interrupt.

The input level of this NMI interrupt input pin can be read by accessing the P8_5 bit in the P8 register.

This pin cannot be used as an input port.

10.8 Key Input Interrupt

Of P10_4 to P10_7, a key input interrupt request is generated when input on any of the P10_4 to P10_7 pins which has had the PD10_4 to PD10_7 bits in the PD10 register set to "0" (input) goes low. Key input interrupts can be used as a key-on wake up function, the function which gets the microcomputer out of wait or stop mode. However, if you intend to use the key input interrupt, do not use P10_4 to P10_7 as analog input ports. Figure 10.14 shows the block diagram of the key input interrupt. Note, however, that while input on any pin which has had the PD10_4 to PD10_7 bits set to "0" (input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

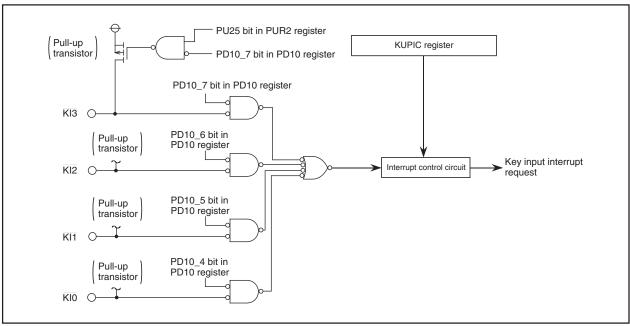


Figure 10.14 Key Input Interrupt Block Diagram

10.9 CAN0 Wake-up Interrupt

CAN0 wake-up interrupt request is generated when a falling edge is input to CRX0. The CAN0 wake-up interrupt is enabled only when the PortEn bit = 1 (CTX/CRX function) and Sleep bit = 1 (Sleep mode enabled) in the C0CTLR register. Figure 10.15 shows the block diagram of the CAN0 wake-up interrupt. Please note that the wake-up message will be lost.

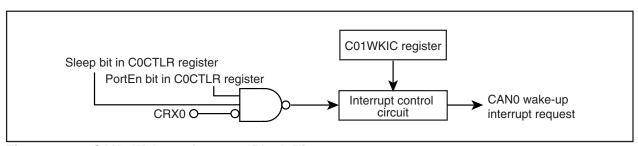


Figure 10.15 CAN0 Wake-up Interrupt Block Diagram

10.10 Address Match Interrupt

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i = 0 to 3). Set the start address of any instruction in the RMADi register. Use the AIER0 and AIER1 bits in the AIER register and the AIER20 and AIER21 bits in the AIER2 register to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to **10.5.7 Saving Registers**). (The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

- Rewrite the content of the stack and then use the REIT instruction to return.
- Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 10.6 shows the value of the PC that is saved to the stack area when an address match interrupt request is accepted. Table 10.7 shows the relationship between address match interrupt sources and associated registers.

Note that when using the external bus in 8-bit width, no address match interrupts can be used for external areas

Figure 10.16 shows the AIER, AIER2, and RMAD0 to RMAD3 registers.

Table 10.6 Value of PC That is Saved to Stack Area When Address Match Interrupt Request is Accepted

Instruction at Address Indicated by RMADi Register						Value of PC that is Saved to Stack Area
• 16-bit ope	16-bit operation code					Address indicated by RMADi
Instruction	n shown belo	w among 8	8-bit operation	on code in	structions	register + 2
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest	
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IMN	√82,dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM des	st	
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S #IMM,dest (However, dest = A0 or A1)						
Instructions other than the above					Address indicated by RMADi	
						register + 1

Value of PC that is saved to stack area: Refer to 10.5.7 Saving Registers.

Table 10.7 Relationship Between Address Match Interrupt Sources and Associated Registers

Address Match Interrupt Sources	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address Match Interrupt 0	AIER0	RMAD0
Address Match Interrupt 1	AIER1	RMAD1
Address Match Interrupt 2	AIER20	RMAD2
Address Match Interrupt 3	AIER21	RMAD3

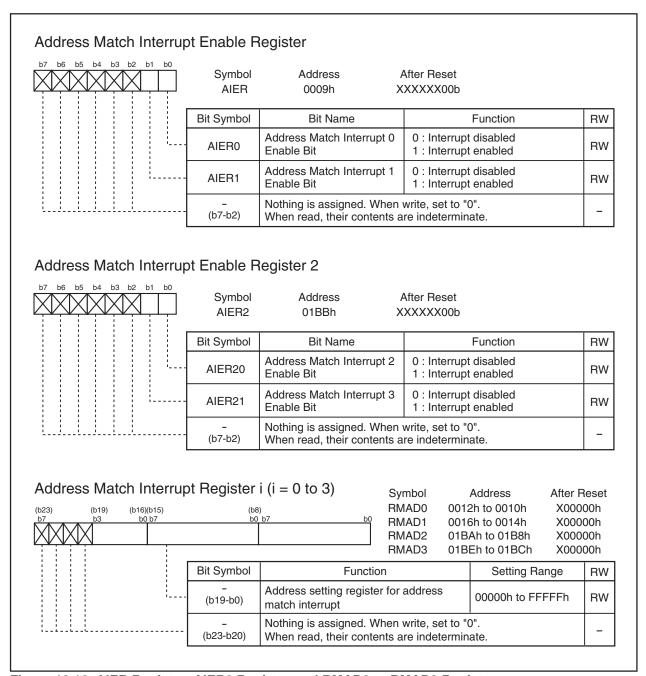


Figure 10.16 AIER Register, AIER2 Register and RMAD0 to RMAD3 Registers

11. Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. Whether to generate a watchdog timer interrupt request or apply a watchdog timer reset as an operation to be performed when the watchdog timer underflows after reaching the terminal count can be selected using the PM12 bit in the PM1 register. The PM12 bit can only be set to "1" (watchdog timer reset). Once this bit is set to "1", it cannot be set to "0" (watchdog timer interrupt) in a program. Refer to **5.3 Watchdog Timer Reset** for details about watchdog timer reset.

When the main clock, on-chip oscillator clock or PLL clock is selected for CPU clock, the divide-by-n value for the prescaler can be selected to be 16 or 128. If a sub clock is selected for CPU clock, the divide-by-n value for the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

With main clock, on-chip oscillator clock or PLL clock selected for CPU clock

Watchdog timer period = Prescaler dividing (16 or 128) × Watchdog timer count (32768)

CPU clock

With sub clock selected for CPU clock

Watchdog timer period =

Prescaler dividing (2) × Watchdog timer count (32768)

CPU clock

For example, when CPU clock = 16 MHz and the divide-by-n value for the prescaler = 16, the watchdog timer period is approx. 32.8 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset. Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 11.1 shows the block diagram of the watchdog timer. Figure 11.2 shows the watchdog timer-related registers.

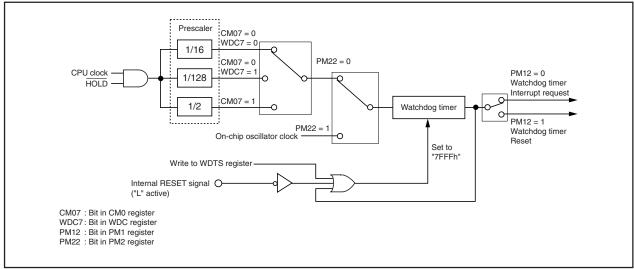


Figure 11.1 Watchdog Timer Block Diagram

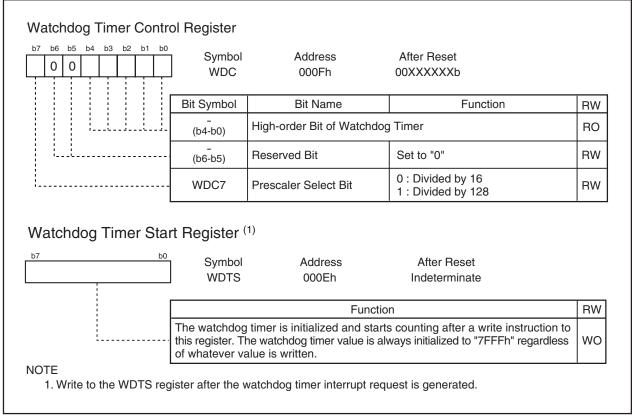


Figure 11.2 WDC Register and WDTS Register

11.1 Count Source Protective Mode

In this mode, a on-chip oscillator clock is used for the watchdog timer count source. The watchdog timer can be kept being clocked even when CPU clock stops as a result of runaway.

Before this mode can be used, the following register settings are required:

- (1) Set the PRC1 bit in the PRCR register to "1" (enable writes to the PM1 and PM2 registers).
- (2) Set the PM12 bit in the PM1 register to "1" (reset when the watchdog timer underflows).
- (3) Set the PM22 bit in the PM2 register to "1" (on-chip oscillator clock used for the watchdog timer count source).
- (4) Set the PRC1 bit in the PRCR register to "0" (disable writes to the PM1 and PM2 registers).
- (5) Write to the WDTS register (watchdog timer starts counting).

Setting the PM22 bit to "1" results in the following conditions:

• The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count source.

Watchdog timer period =
$$\frac{\text{Watchdog timer count (32768)}}{\text{on-chip oscillator clock}}$$

- The CM10 bit in the CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode or hold state.

12. DMAC

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention. Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8- or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 12.1 shows the block diagram of the DMAC. Table 12.1 shows the DMAC specifications. Figures 12.2 to 12.4 show the DMAC related-registers.

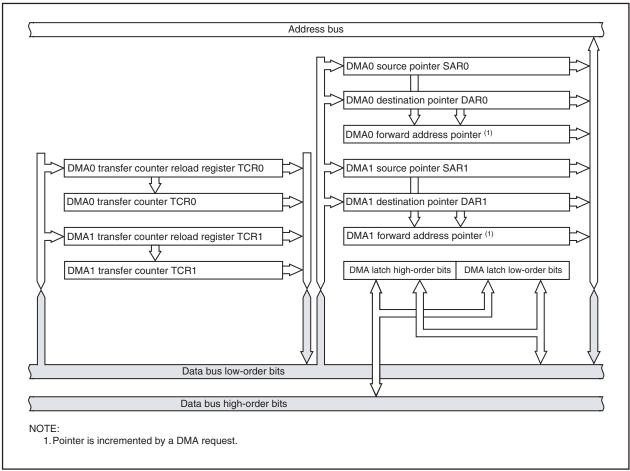
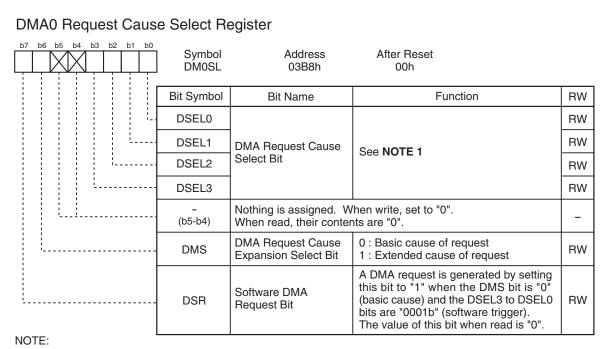


Figure 12.1 DMAC Block Diagram

A DMA request is generated by a write to the DSR bit in the DMiSL register (i = 0, 1), as well as by an interrupt request which is generated by any function specified by the DMS and DSEL3 to DSEL0 bits in the DMiSL register. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the IR bit in the interrupt control register does not change state due to a DMA transfer.

A data transfer is initiated each time a DMA request is generated when the DMAE bit in the DMiCON register = 1 (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. For details, refer to **12.4 DMA Request**.

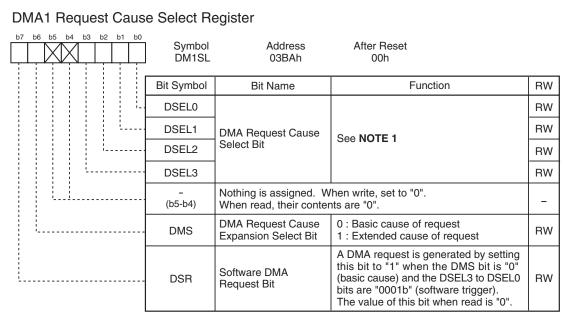
Table 12.1 DMAC Specifications


Ite	em	Specification			
No. of Channel	S	2 (cycle steal method)			
Transfer Memory Space		• From any address in the 1-Mbyte space to a fixed address			
		• From a fixed address to any address in the 1-Mbyte space			
		• From a fixed address to a fixed address			
Maximum No. of	Bytes Transferred	128 Kbytes (with 16-bit transfer) or 64 Kbytes (with 8-bit transfer)			
DMA Request F	actors (1) (2)	Falling edge of INT0 or INT1			
		Both edge of INT0 or INT1			
		Timer A0 to timer A4 interrupt requests			
		Timer B0 to timer B5 interrupt requests			
		UART0 transfer, UART0 reception interrupt requests			
		UART1 transfer, UART1 reception interrupt requests			
		UART2 transfer, UART2 reception interrupt requests			
		SI/O3, SI/O4 interrupt requests			
		A/D conversion interrupt requests			
		Software triggers			
Channel Priorit	у	DMA0 > DMA1 (DMA0 takes precedence)			
Transfer Unit		8 bits or 16 bits			
Transfer Addre	ss Direction	forward or fixed (The source and destination addresses cannot both be			
		in the forward direction.)			
Transfer Mode	Single Transfer	Transfer is completed when the DMAi transfer counter underflows			
		after reaching the terminal count.			
	Repeat Transfer	When the DMAi transfer counter underflows, it is reloaded with the value			
		of the DMAi transfer counter reload register and a DMA transfer is			
		continued with it.			
DMA Interrupt I	Request	When the DMAi transfer counter underflowed			
Generation Tim	ning				
DMA Start Up		Data transfer is initiated each time a DMA request is generated when the			
		The DMAE bit in the DMAiCON register = 1 (enabled).			
DMA Shutdown	Single Transfer	• When the DMAE bit is set to "0" (disabled)			
		 After the DMAi transfer counter underflows 			
	Repeat Transfer	When the DMAE bit is set to "0" (disabled)			
Reload Timing for Forward		When a data transfer is started after setting the DMAE bit to "1" (enabled)			
Address Pointer and Transfer		the forward address pointer is reloaded with the value of the SARi or the			
Counter		DARi pointer whichever is specified to be in the forward direction and the			
		DMAi transfer counter is reloaded with the value of the DMAi transfer			
		counter reload register.			
DMA Transfer (Cycles	Minimum 3 cycles between SFR and internal RAM			

i = 0, 1

NOTES

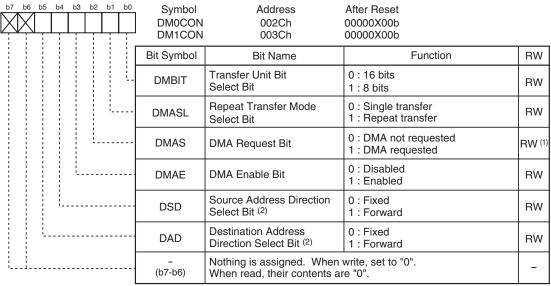
- 1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.
- 2. The selectable causes of DMA requests differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 0020h to 003Fh) are accessed by the DMAC.



1. The causes of DMA0 requests can be selected by a combination of the DMS bit and the DSEL3 to DSEL0 bits in the manner described below.

DSEL3 to DSEL0 Bits	DMS = 0 (basic cause of request)	DMS = 1 (extended cause of request)
0000b	Falling edge of INTO pin	_
0001b	Software trigger	_
0010b	Timer A0	_
0011b	Timer A1	_
0100b	Timer A2	_
0101b	Timer A3	_
0110b	Timer A4	Two edges of INTO pin
0111b	Timer B0	Timer B3
1000b	Timer B1	Timer B4
1001b	Timer B2	Timer B5
1010b	UART0 transmit	_
1011b	UART0 receive	_
1100b	UART2 transmit	_
1101b	UART2 receive	_
1110b	A/D conversion	_
1111b	UART1 transmit	_

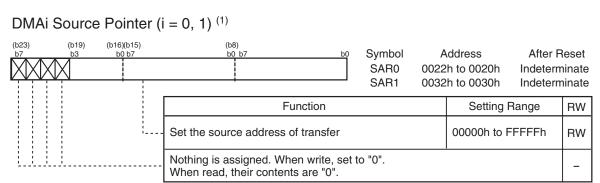
Figure 12.2 DM0SL Register



NOTE:

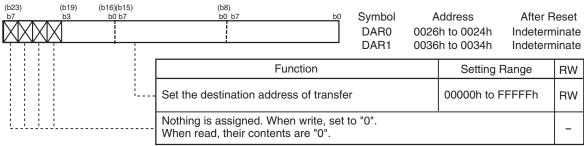
1. The causes of DMA1 requests can be selected by a combination of the DMS bit and the DSEL3 to DSEL0 bits in the manner described below.

DSEL3 to DSEL0 Bits	DMS = 0 (basic cause of request)	DMS = 1 (extended cause of request)
		Divis = 1 (extended cause of request)
0000b	Falling edge of INT1 pin	_
0001b	Software trigger	_
0010b	Timer A0	_
0011b	Timer A1	_
0100b	Timer A2	_
0101b	Timer A3	SI/O3
0110b	Timer A4	SI/O4
0111b	Timer B0	Two edges of INT1 pin
1000b	Timer B1	
1001b	Timer B2	_
1010b	UART0 transmit	_
1011b	UART0 receive/ACK0	_
1100b	UART2 transmit	_
1101b	UART2 receive/ACK2	_
1110b	A/D conversion	_
1111b	UART1 transmit/ACK1	_


DMAi Control Register (i = 0, 1)

NOTES:

- 1. The DMAS bit can be set to "0" by writing "0" in a program. (This bit remains unchanged even if "1" is written.)
- 2. At least one of the DAD and DSD bits must be "0" (address direction fixed).


Figure 12.3 DM1SL Register, DM0CON and DM1CON Registers

NOTE:

- 1. If the DSD bit in the DMiCON register is "0" (fixed), this register can only be written to when the DMAE bit in the DMiCON register is "0" (DMA disabled).
 - If the DSD bit is "1" (forward direction), this register can be written to at any time.
 - If the DSD bit is "1" and the DMAE bit is "1" (DMA enabled), the DMAi forward address pointer can be read from this register. Otherwise, the value written to it can be read.

DMAi Destination Pointer (i = 0, 1) (1)

NOTE:

- 1. If the DAD bit in the DMiCON register is "0" (fixed), this register can only be written to when the DMAE bit in the DMiCON register is "0" (DMA disabled).
 - If the DAD bit is "1" (forward direction), this register can be written to at any time.
 - If the DAD bit is "1" and the DMAE bit is "1" (DMA enabled), the DMAi forward address pointer can be read from this register. Otherwise, the value written to it can be read.

DMAi Transfer Counter (i = 0, 1)

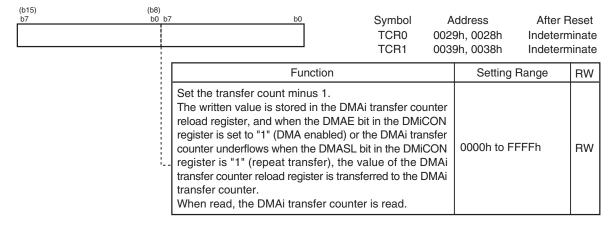


Figure 12.4 SAR0 and SAR1 Registers, DAR0 and DAR1 Registers, TCR0 and TCR1 Registers

12.1 Transfer Cycle

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer. During memory expansion and microprocessor modes, it is also affected by the BYTE pin level. Furthermore, the bus cycle itself is extended by a software wait or RDY signal.

12.1.1 Effect of Source and Destination Addresses

If the transfer unit and data bus both are 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

Similarly, if the transfer unit and data bus both are 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.

12.1.2 Effect of BYTE Pin Level

During memory expansion and microprocessor modes, if 16 bits of data are to be transferred on an 8-bit data bus (input on the BYTE pin = high), the operation is accomplished by transferring 8 bits of data twice. Therefore, this operation requires two bus cycles to read data and two bus cycles to write data.

Furthermore, if the DMAC is to access the internal area (internal ROM, internal RAM, or SFR), unlike in the case of the CPU, the DMAC does it through the data bus width selected by the BYTE pin.

12.1.3 Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.

Figure 12.5 shows the example of the transfer cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16- bit unit using an 8-bit bus ((2) on Figure 12.5), two source read bus cycles and two destination write bus cycles are required.

12.1.4 Effect of RDY Signal

During memory expansion and microprocessor modes, DMA transfers to and from an external area are affected by the RDY signal. Refer to **7.2.6** RDY Signal.

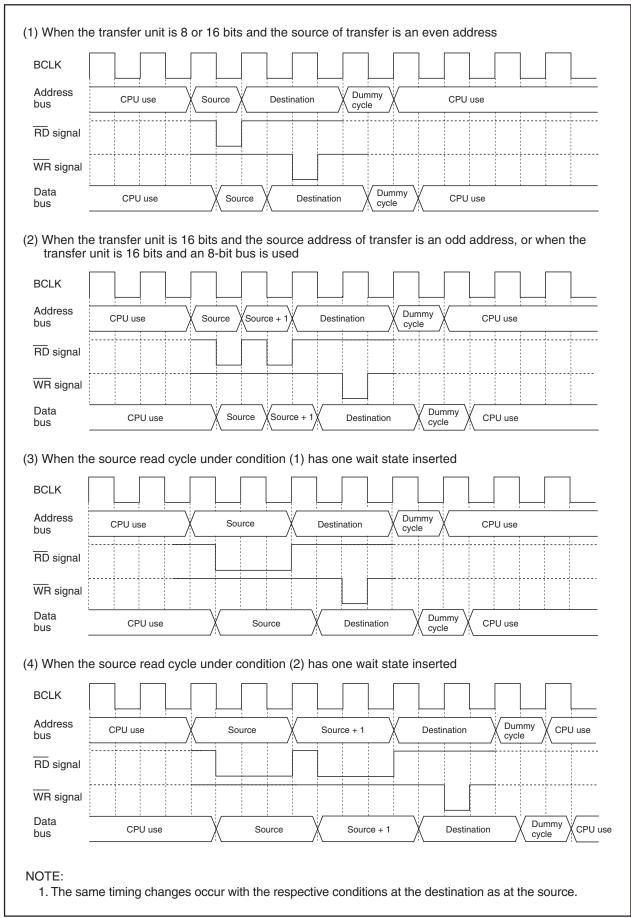


Figure 12.5 Transfer Cycles for Source Read

12.2 DMA Transfer Cycles

Any combination of even or odd transfer read and write addresses is possible.

Table 12.2 shows the number of DMA transfer cycles. Table 12.3 shows the coefficient j, k.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles \times j + No. of write cycles \times k

Table 12.2 DMA Transfer Cycles

Transfer Unit	Bus Width	Access Address	Single-ch	nip Mode	Memory Expansion Mode Microprocessor Mode		
Transier Offic	Dus Widili		No. of Read Cycles	No. of Write Cycles	No. of Read Cycles	No. of Write Cycles	
	16 bits	Even	1	1	1	1	
8-bit Transfer	(BYTE = L)	Odd	1	1	1	1	
(DMBIT =1)	8 bits	Even	-	-	1	1	
	(BYTE= H)	Odd	-	-	1	1	
	16 bits	Even	1	1	1	1	
16-bit Transfer	(BYTE =L)	Odd	2	2	2	2	
(DMBIT = 0)	8 bits	Even	-	_	2	2	
	(BYTE = H)	Odd	-	_	2	2	

^{-:} This condition does not exist.

Table 12.3 Coefficient j, k

	Internal Area			External Area							
	Internal F	OM, RAM	SFR			Separate Bus			Multiplexed Bus		
	No Wait With Wait 1 Wait (1) 2 Waits (1)	ait With Wait 1 Wait (1) 2 Waits (1)	No Wait	With Wait (2)		With Wait (2)					
		Z Waits		1 Wait	2 Waits	3 Waits	1 Wait	2 Waits	3 Waits		
j	1	2	2	3	1	2	3	4	3	3	4
k	1	2	2	3	2	2	3	4	3	3	4

NOTES:

- 1. Depends on the set value of the PM20 bit in the PM2 register.
- 2. Depends on the set value of the CSE register.

12.3 DMA Enable

When a data transfer starts after setting the DMAE bit in the DMiCON register (i = 0, 1) to "1" (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in the DMiCON register is "1" (forward) or the DARi register value when the DAD bit in the DMiCON register is "1" (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to "1" again while it remains set, the DMAC performs the above operation. However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below.

- Step 1: Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously.
- Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

12.4 DMA Request

The DMAC can generate a DMA request as triggered by the cause of request that is selected with the DMS and DSEL3 to DSEL0 bits in the DMiSL register (i = 0, 1) on either channel. Table 12.4 shows the timing at which the DMAS bit changes state.

Whenever a DMA request is generated, the DMAS bit is set to "1" (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to "1" (enabled) when this occurred, the DMAS bit is set to "0" (DMA not requested) immediately before a data transfer starts. This bit cannot be set to "1" in a program (it can only be set to "0").

The DMAS bit may be set to "1" when the DMS or the DSEL3 to DSEL0 bits change state. Therefore, always be sure to set the DMAS bit to "0" after changing the DMS or the DSEL3 to DSEL0 bits.

Because if the DMAE bit is "1", a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is "0" when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

Table 12.4 Timing at Which DMAS bit Changes State

DMA Footor	DMAS Bit in DMiCON Register				
DMA Factor	Timing at which the bit is set to "1"	Timing at which the bit is set to "0"			
Software Trigger	When the DSR bit in the DMiSL register	Immediately before a data transfer starts			
	is set to "1"	When set by writing "0" in a program			
Peripheral Function	When the interrupt control register for				
	the peripheral function that is selected				
	by the DSEL3 to DSEL0 and DMS bits				
	in the DMiSL register has its IR bit set to "1".				

i = 0, 1

12.5 Channel Priority and DMA Transfer Timing

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to "1" (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1.

The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period.

Figure 12.6 shows an example of DMA transfer effected by external factors.

In Figure 12.6, DMA0 request having priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, a bus arbitration is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus arbitration is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DMAS bit. Therefore, when DMA requests, as DMA1 in Figure 12.6, occurs more than one time, the DMAS bit is set to "0" as soon as getting the bus arbitration. The bus arbitration is returned to the CPU when one transfer is completed.

Refer to 7.2.7 HOLD Signal for details about bus arbitration between the CPU and DMA.

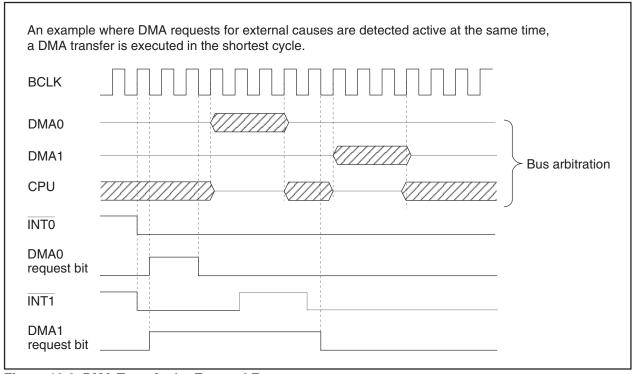


Figure 12.6 DMA Transfer by External Factors

13. Timers

Eleven 16-bit timers, each capable of operating independently of the others, can be classified by function as either timer A (five) and timer B (six). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc.

Figures 13.1 and 13.2 show block diagrams of Timer A and Timer B configuration, respectively.

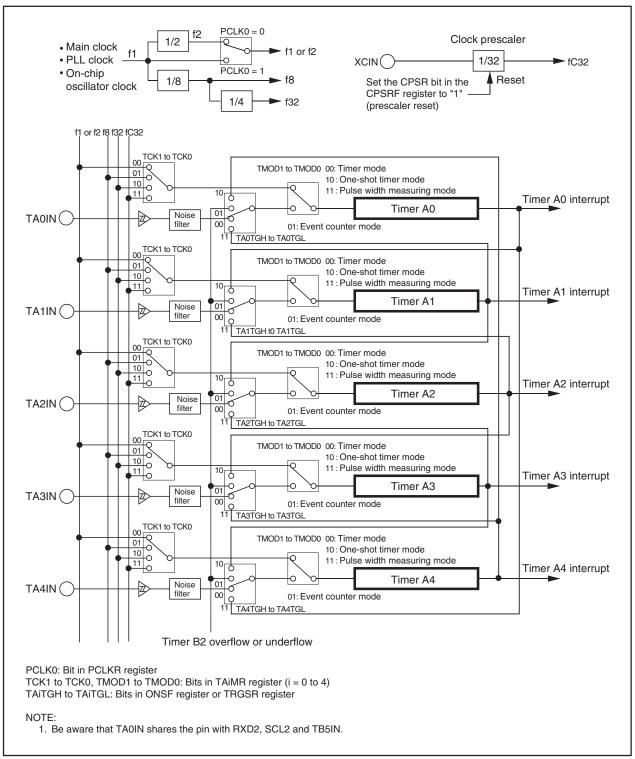


Figure 13.1 Timer A Configuration

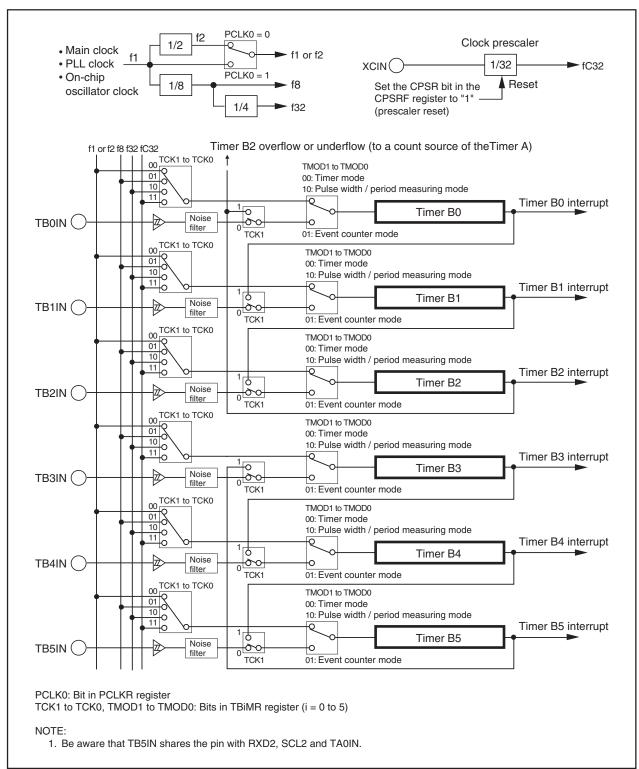


Figure 13.2 Timer B Configuration

13.1 Timer A

Figure 13.3 shows a block diagram of the timer A. Figures 13.4 to 13.6 show the timer A-related registers. The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use the TMOD1 to TMOD0 bits in the TAiMR register (i = 0 to 4) to select the desired mode.

• Timer mode: The timer counts an internal count source.

Event counter mode: The timer counts pulses from an external device or overflows and

underflows of other timers.

• One-shot timer mode: The timer outputs a pulse only once before it reaches the minimum count "0000h."

Pulse width modulation mode: The timer outputs pulses in a given width successively.

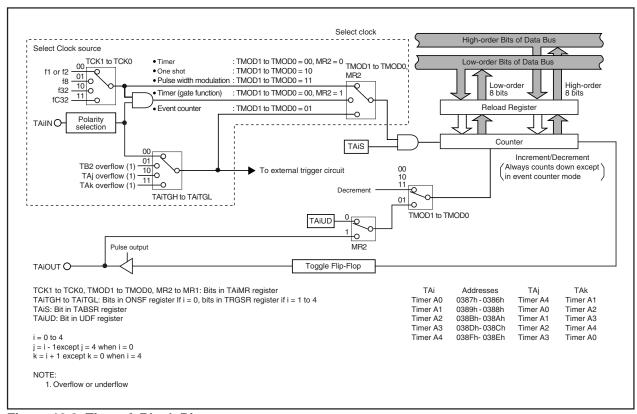
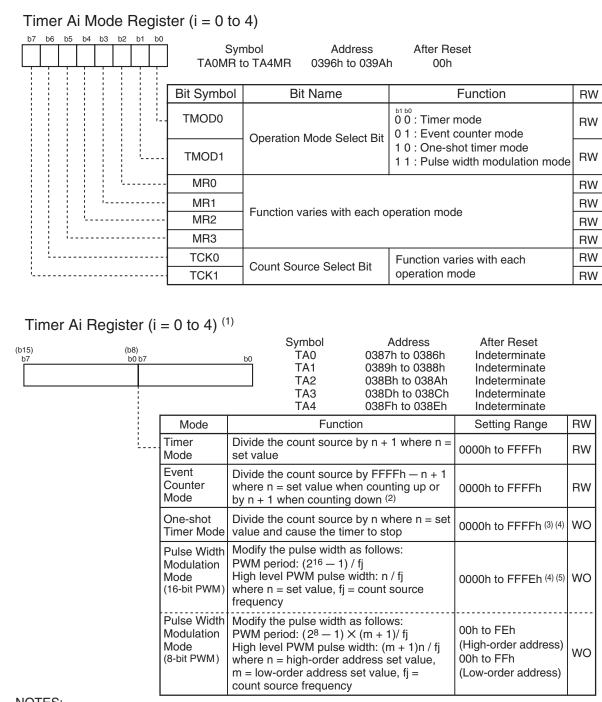
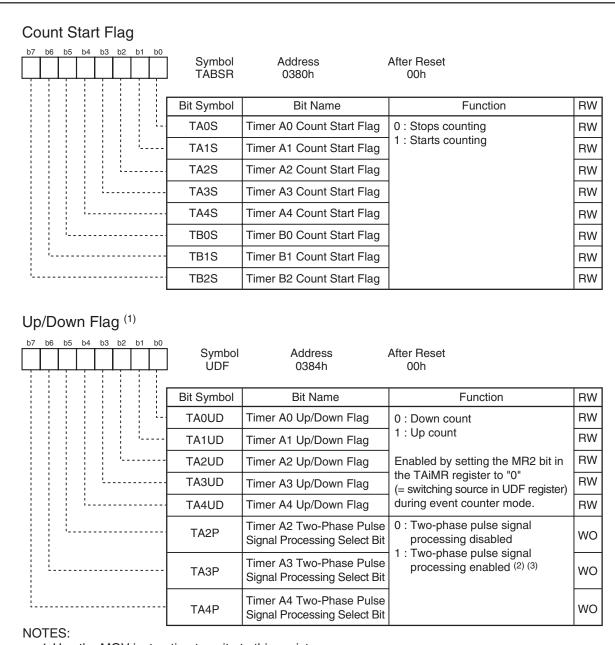



Figure 13.3 Timer A Block Diagram



NOTES:

- 1. The register must be accessed in 16-bit unit.
- 2. The timer counts pulses from an external device or overflows or underflows in other timers.
- 3. If the TAi register is set to "0000h", the counter does not work and timer Ai interrupt requests are not generated either. Furthermore, if "pulse output" is selected, no pulses are output from the TAiOUT pin.
- 4. Use the MOV instruction to write to the TAi register.
- 5. If the TAi register is set to "0000h", the pulse width modulator does not work, the output level on the TAiOUT pin remains low, and timer Ai interrupt requests are not generated either.

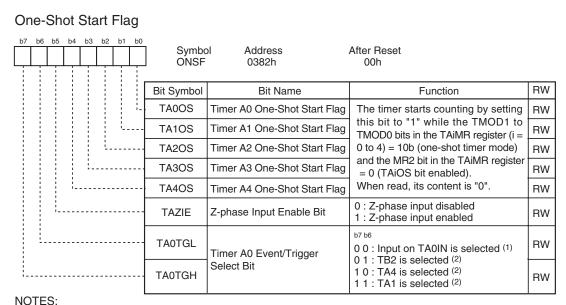

 The same applies when the 8 high-order bits in the TAi register are set to "00h" while operating as an 8-bit pulse width modulator.

Figure 13.4 TA0MR to TA4MR Registers and TA0 to TA4 Registers

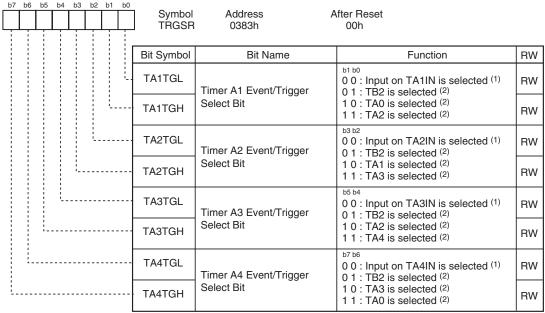

- 1. Use the MOV instruction to write to this register.
 - 2. Make sure the port direction bits for the TA2IN to TA4IN and TA2OUT to TA4OUT pins are set to "0" (input mode).
 - 3. When not using the two-phase pulse signal processing function, set the corresponding bit to timer A2 to timer A4 to "0".

Figure 13.5 TABSR Register and UDF Register

- 1. Make sure the PD7_1 bit in the PD7 register is set to "0" (input mode).
- 2. Over flow or under flow.

Trigger Select Register

NOTES:

- 1. Make sure the port direction bits for the TA1IN to TA4IN pins are set to "0" (input mode).
- 2. Over flow or under flow.

Clock Prescaler Reset Flag

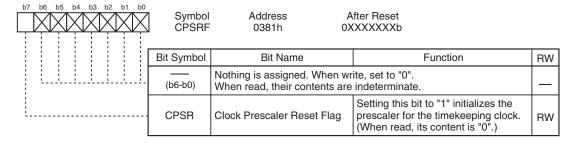


Figure 13.6 ONSF Register, TRGSR Register and CPSRF Register

13.1.1 Timer Mode

In timer mode, the timer counts a count source generated internally. Table 13.1 lists specifications in timer mode. Figure 13.7 shows TAiMR register in timer mode.

Table 13.1 Specifications in Timer Mode

Item	Specification				
Count Source	f1, f2, f8, f32, fC32				
Count Operation	Down-count				
	When the timer underflows, it reloads the reload register contents and continues counting				
Divide Ratio	1/(n+1) n: set value of the TAi register 0000h to FFFFh				
Count Start Condition	Set the TAiS bit in the TABSR register to "1" (start counting)				
Count Stop Condition	Set the TAiS bit to "0" (stop counting)				
Interrupt Request Generation Timing	Timer underflow				
TAilN Pin Function	I/O port or gate input				
TAiOUT Pin Function	I/O port or pulse output				
Read from Timer	Count value can be read by reading the TAi register				
Write to Timer	When not counting and until the 1st count source is input after counting start				
	Value written to the TAi register is written to both reload register and counter				
	When counting (after 1st count source input)				
	Value written to the TAi register is written to only reload register				
	(Transferred to counter when reloaded next)				
Select Function	Gate function				
	Counting can be started and stopped by an input signal to TAiIN pin				
	Pulse output function				
	Whenever the timer underflows, the output polarity of TAiOUT pin is inverted.				
	When TAiS bit is set to "0" (stop counting), the pin outputs a low.				

i = 0 to 4

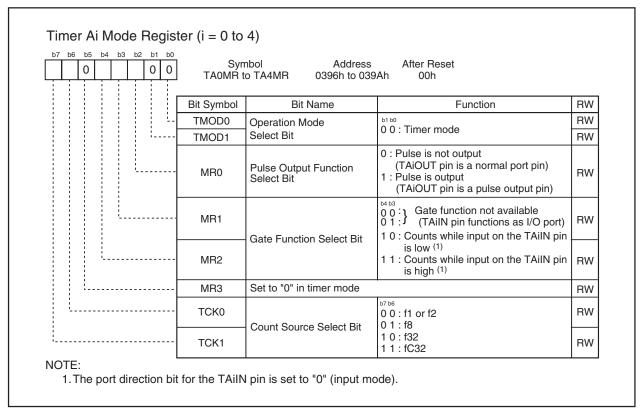
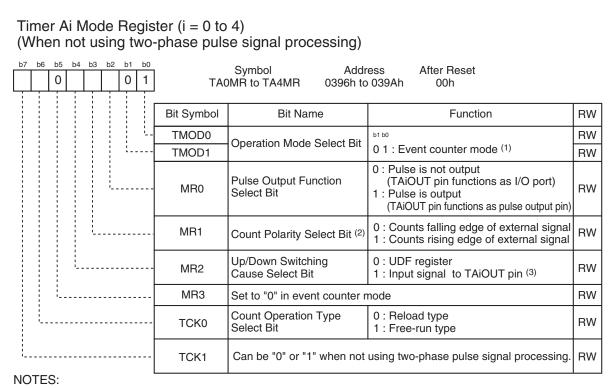


Figure 13.7 TA0MR to TA4MR Registers in Timer Mode

13.1.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 13.2 lists specifications in event counter mode (when not processing two-phase pulse signal). Figure 13.8 shows TAiMR register in event counter mode (when not processing two-phase pulse signal). Table 13.3 lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4). Figure 13.9 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

Table 13.2 Specifications in Event Counter Mode (when not processing two-phase pulse signal)


Item	Specification			
Count Source	• External signals input to TAiIN pin (effective edge can be selected in program)			
	Timer B2 overflows or underflows,			
	Timer Aj overflows or underflows,			
	Timer Ak overflows or underflows			
Count Operation	Up-count or down-count can be selected by external signal or program			
	When the timer overflows or underflows, it reloads the reload register			
	contents and continues counting. When operating in free-running mode,			
	the timer continues counting without reloading.			
Divided Ratio	1/ (FFFFh - n + 1) for up-count			
	1/ (n + 1) for down-count n: set value of the TAi register 0000h to FFFFh			
Count Start Condition	Set the TAiS bit in the TABSR register to "1" (start counting)			
Count Stop Condition	Set the TAiS bit to "0" (stop counting)			
Interrupt Request Generation Timing	Timer overflow or underflow			
TAilN Pin Function	I/O port or count source input			
TAiOUT Pin Function	I/O port, pulse output, or up/down-count select input			
Read from Timer	Count value can be read by reading the TAi register			
Write to Timer	When not counting and until the 1st count source is input after counting start			
	Value written to the TAi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to the TAi register is written to only reload register			
	(Transferred to counter when reloaded next)			
Select Function	Free-run count function			
	Even when the timer overflows or underflows, the reload register content			
	is not reloaded to it			
	Pulse output function			
	Whenever the timer underflows or underflows, the output polarity of			
	TAiOUT pin is inverted.			
	When TAiS bit is set to "0" (stop counting), the pin outputs a low.			

i = 0 to 4

j = i - 1, except j = 4 if i = 0

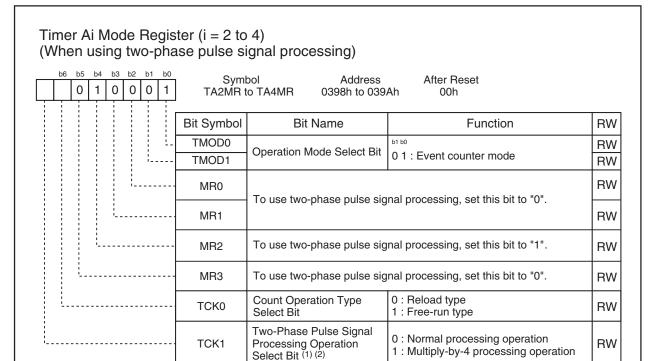
k = i + 1, except k = 0 if i = 4

- 1. During event counter mode, the count source can be selected using the ONSF and TRGSR registers.
- 2. Effective when the TAiTGH and TAiTGL bits in the ONSF or TRGSR register are "00b" (TAilN pin input).
- 3. Count down when input on TAiOUT pin is low or count up when input on that pin is high. The port direction bit for TAiOUT pin is set to "0" (input mode).

Figure 13.8 TA0MR to TA4MR Registers in Event Counter Mode (when not using two-phase pulse signal processing)

Table 13.3 Specifications in Event Counter Mode (when processing two-phase pulse signal with timers A2, A3 and A4)

Item	Specification				
Count Source	Two-phase pulse signals input to TAiIN or TAiOUT pins				
Count Operation	Up-count or down-count can be selected by two-phase pulse signal				
	• When the timer overflows or underflows, it reloads the reload register				
	contents and continues counting. When operating in free-running mode,				
	the timer continues counting without reloading.				
Divide Ratio	1/ (FFFFh - n + 1) for up-count				
	1/ (n + 1) for down-count n: set value of the TAi register 0000h to FFFFh				
Count Start Condition	Set the TAiS bit in the TABSR register to "1" (start counting)				
Count Stop Condition	Set the TAiS bit to "0" (stop counting)				
Interrupt Request Generation Timing	Timer overflow or underflow				
TAilN Pin Function	Two-phase pulse input				
TAiOUT Pin Function	Two-phase pulse input				
Read from Timer	Count value can be read by reading the TAi register				
Write to Timer	• When not counting and until the 1st count source is input after counting start				
	Value written to TAi register is written to both reload register and counter				
	When counting (after 1st count source input)				
	Value written to TAi register is written to reload register				
	(Transferred to counter when reloaded next)				
Select Function (1)	Normal processing operation (timer A2 and timer A3)				
	The timer counts up rising edges or counts down falling edges on TAjIN				
	pin when input signals on TAjOUT pin is "H".				
	TAjOUT				
	TAJIN A V V				
	Up- Up- Up- Down- Down- count count count count count				
	Multiply-by-4 processing operation (timer A3 and timer A4)				
	If the phase relationship is such that TAkIN pin goes "H" when the input				
	signal on TAkOUT pin is "H", the timer counts up rising and falling edges				
	on TAkOUT and TAkIN pins. If the phase relationship is such that TAkIN				
	pin goes "L" when the input signal on TAkOUT pin is "H", the timer counts				
	down rising and falling edges on TAkOUT and TAkIN pins.				
	TAKOUT A V A V A V				
	Count up all edges Count down all edges				
	TAKIN				
	Count up all edges Count down all edges				
	Counter initialization by Z-phase input (timer A3)				
	The timer count value is initialized to "0" by Z-phase input.				


i = 2 to 4

j = 2, 3

k = 3, 4

NOTE:

1. Only timer A3 is selectable. Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.

NOTES:

- 1. The TCK1 bit is valid for the TA3MR register. No matter how this bit is set, timers A2 and A4 always operate in normal processing mode and x4 processing mode, respectively.
- 2. If two-phase pulse signal processing is desired, following register settings are required:
 - Set the TAiP bit in the UDF register to "1" (two-phase pulse signal processing function enabled).
 - Set the TAiTGH and TAiTGL bits in the TRGSR register to "00b" (TAilN pin input).
 - Set the port direction bits for TAilN and TAiOUT to "0" (input mode).

Figure 13.9 TA2MR to TA4MR Registers in Event Counter Mode (when using two-phase pulse signal processing with timer A2, A3 or A4)

13.1.2.1 Counter Initialization by Two-Phase Pulse Signal Processing

This function initializes the timer count value to "0" by Z-phase (counter initialization) input during two-phase pulse signal processing.

This function can only be used in timer A3 event counter mode during two-phase pulse signal processing, free-running type, x4 processing, with Z-phase entered from the ZP pin.

Counter initialization by Z-phase input is enabled by writing "0000h" to the TA3 register and setting the TAZIE bit in the ONSF register to "1" (Z-phase input enabled).

Counter initialization is accomplished by detecting Z-phase input edge. The active edge can be selected to be the rising or falling edge by using the POL bit in the INT2IC register. The Z-phase pulse width applied to the INT2 pin must be equal to or greater than one clock cycle of the timer A3 count source.

The counter is initialized at the next count timing after recognizing Z-phase input. Figure 13.10 shows the relationship between the two-phase pulse (A phase and B phase) and the Z-phase.

If timer A3 overflow or underflow coincides with the counter initialization by Z-phase input, a timer A3 interrupt request is generated twice in succession. Do not use the timer A3 interrupt when using this function.

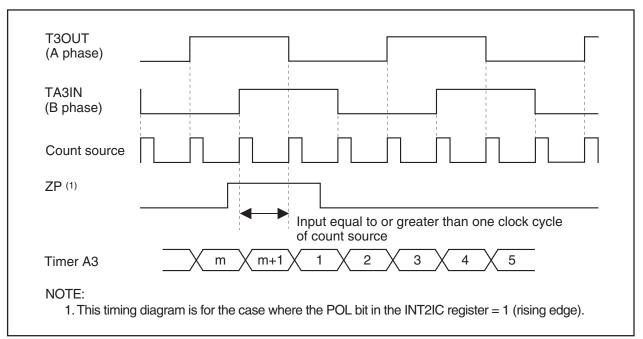


Figure 13.10 Two-phase Pulse (A phase and B phase) and Z Phase

13.1.3 One-shot Timer Mode

M16C/6N Group (M16C/6NL, M16C/6NN)

In one-shot timer mode, the timer is activated only once by one trigger. When the trigger occurs, the timer starts up and continues operating for a given period. Table 13.4 lists specifications in one-shot timer mode. Figure 13.11 shows the TAiMR register in the one-shot timer mode.

Table 13.4 Specifications in One-shot Timer Mode

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	When the counter reaches 0000h, it stops counting after reloading a new value
	If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide Ratio	1/n n: set value of the TAi register 0000h to FFFFh
	However, the counter does not work if the divide-by-n value is set to 0000h.
Count Start Condition	The TAiS bit in the TABSR register = 1 (start counting) and one of the following
	triggers occurs.
	External trigger input from the TAiIN pin
	Timer B2 overflow or underflow,
	Timer Aj overflow or underflow,
	Timer Ak overflow or underflow
	The TAiOS bit in the ONSF register is set to "1" (timer starts)
Count Stop Condition	When the counter is reloaded after reaching "0000h"
	TAiS bit is set to "0" (stop counting)
Interrupt Request Generation Timing	When the counter reaches "0000h"
TAilN Pin Function	I/O port or trigger input
TAiOUT Pin Function	I/O port or pulse output
Read from Timer	An indeterminate value is read by reading the TAi register
Write to Timer	When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select Function	Pulse output function
	The timer outputs a low when not counting and a high when counting.

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

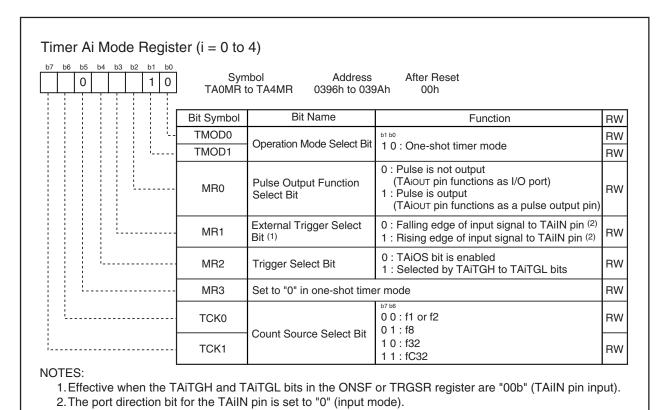


Figure 13.11 TAiMR Register in One-shot Timer Mode

13.1.4 Pulse Width Modulation (PWM) Mode

In pulse width modulation mode, the timer outputs pulses of a given width in succession. The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator.

Table 13.5 lists specifications in pulse width modulation mode. Figure 13.12 shows TAiMR register in pulse width modulation mode.

Figures 13.13 and 13.14 show examples of how a 16-bit pulse width modulator operates and how an 8-bit pulse width modulator operates, respectively.

Table 13.5 Specifications in Pulse Width Modulation Mode

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count (operating as an 8-bit or a 16-bit pulse width modulator)
	The timer reloads a new value at a rising edge of PWM pulse and continues counting
	The timer is not affected by a trigger that occurs during counting
16-bit PWM	High level width n / fj n : set value of the TAi register
	• Cycle time (2 ¹⁶ -1) / fj fixed fj : count source frequency (f1, f2, f8, f32, fC32)
8-bit PWM	High level width n × (m+1) / fj n : set value of the TAi register high-order address
	ullet Cycle time (28-1) $ imes$ (m+1) / fj m : set value of the TAi register low-order address
Count Start Condition	The TAiS bit in the TABSR register is set to "1" (start counting)
	The TAiS bit = 1 and external trigger input from the TAiIN pin
	The TAiS bit = 1 and one of the following external triggers occurs
	Timer B2 overflow or underflow,
	Timer Aj overflow or underflow,
	Timer Ak overflow or underflow
Count Stop Condition	The TAiS bit is set to "0" (stop counting)
Interrupt Request Generation Timing	On the falling edge of the PWM pulse
TAIIN Pin Function	I/O port or trigger input
TAiOUT Pin Function	Pulse output
Read from Timer	An indeterminate value is read by reading the TAi register
Write to Timer	When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

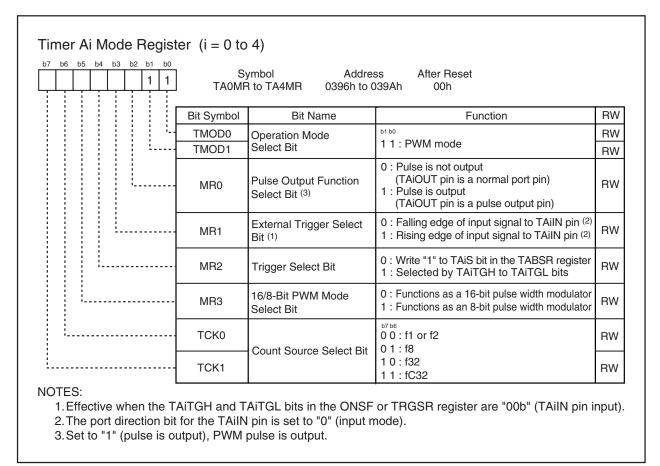


Figure 13.12 TA0MR to TA4MR Registers in Pulse Width Modulation Mode

This document is under development and its contents are subject to change.

Figure 13.13 Example of 16-bit Pulse Width Modulator Operation

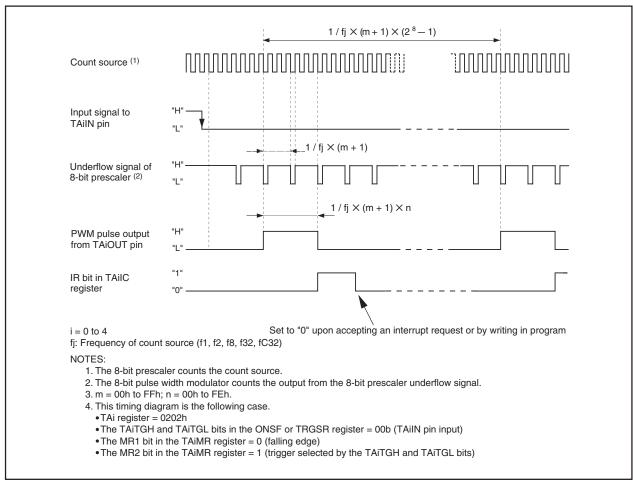


Figure 13.14 Example of 8-bit Pulse Width Modulator Operation

13.2 Timer B

Figure 13.15 shows a block diagram of the timer B. Figures 13.16 and 13.17 show the timer B-related registers.

Timer B supports the following three modes. Use the TMOD1 and TMOD0 bits in the TBiMR register (i = 0 to 5) to select the desired mode.

• Timer mode : The timer counts an internal count source.

• Event counter mode : The timer counts pulses from an external device or over

flows or underflows of other timers.

• Pulse period/pulse width measuring mode: The timer measures pulse period or pulse width of an external signal.

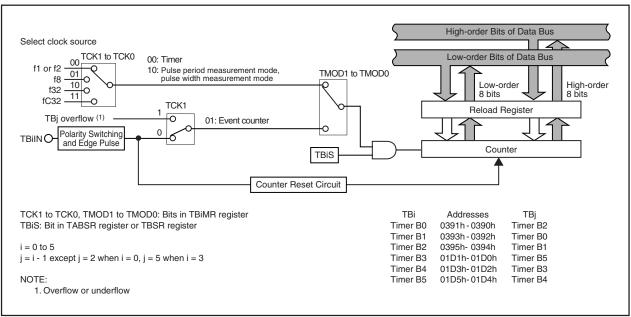


Figure 13.15 Timer B Block Diagram

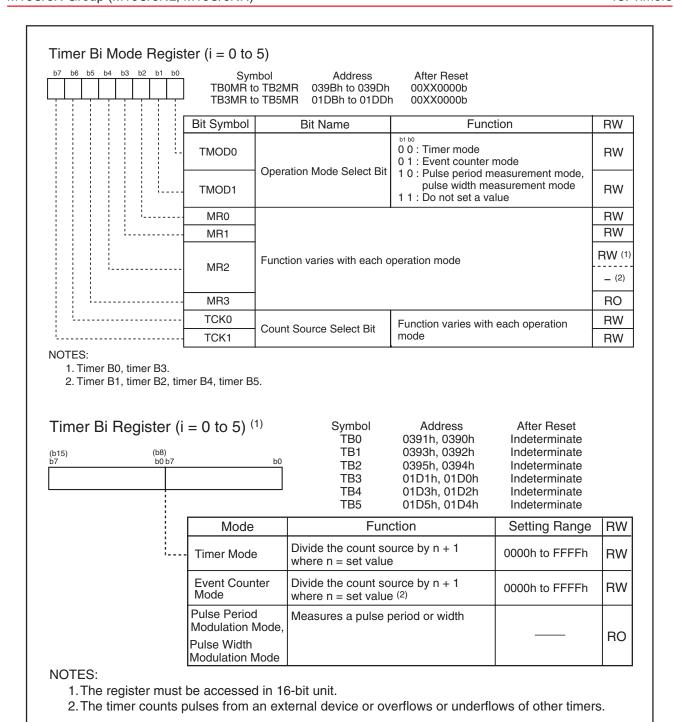


Figure 13.16 TB0MR to TB5MR Registers and TB0 to TB5 Registers

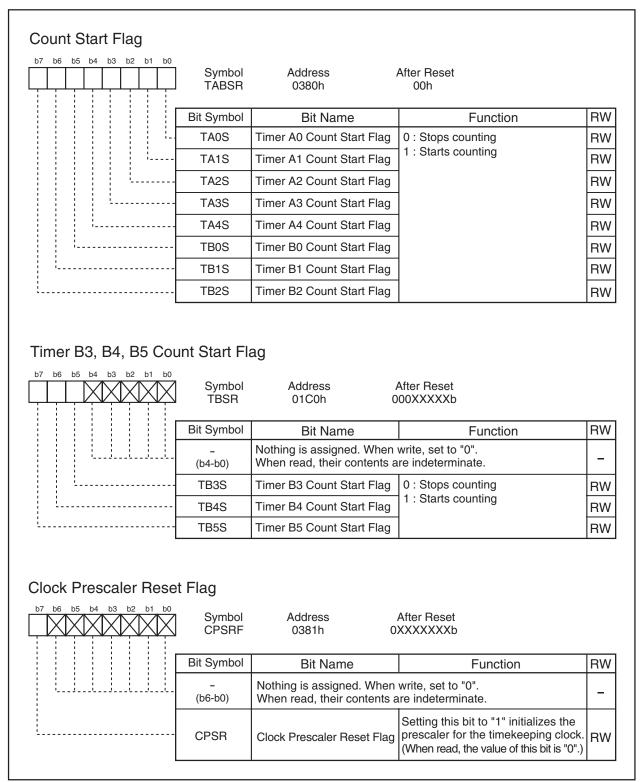


Figure 13.17 TABSR Register, TBSR Register and CPSRF Register

13.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally.

Table 13.6 lists specifications in timer mode. Figure 13.18 shows TBiMR register in timer mode.

Table 13.6 Specifications in Timer Mode

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	Down-count
	• When the timer underflows, it reloads the reload register contents and
	continues counting
Divide Ratio	1/(n+1) n: set value of the TBi register 0000h to FFFFh
Count Start Condition	Set the TBiS bit (1) to "1" (start counting)
Count Stop Condition	Set the TBiS bit to "0" (stop counting)
Interrupt Request Generation Timing	Timer underflow
TBiIN Pin Function	I/O port
Read from Timer	Count value can be read by reading the TBi register
Write to Timer	When not counting and until the 1st count source is input after counting start
	Value written to the TBi register is written to both reload register and counter
	When counting (after 1st count source input)
	Value written to the TBi register is written to only reload register
	(Transferred to counter when reloaded next)

i = 0 to 5

NOTE:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.

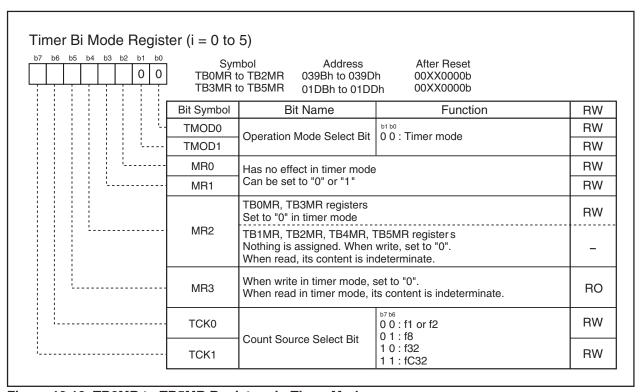


Figure 13.18 TB0MR to TB5MR Registers in Timer Mode

13.2.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Table 13.7 lists specifications in event counter mode. Figure 13.19 shows TBiMR register in event counter mode.

Table 13.7 Specifications in Event Counter Mode

Item	Specification	
Count Source	• External signals input to TBiIN pin (effective edge can be selected in program	
	Timer Bj overflow or underflow	
Count Operation	Down-count	
	When the timer underflows, it reloads the reload register contents and	
	continues counting	
Divide Ratio	1/(n+1) n: set value of the TBi register 0000h to FFFFh	
Count Start Condition	Set TBiS bit (1) to "1" (start counting)	
Count Stop Condition	Set TBiS bit to "0" (stop counting)	
Interrupt Request Generation Timing	Timer underflow	
TBiIN Pin Function	Count source input	
Read from Timer	Count value can be read by reading the TBi register	
Write to Timer	When not counting and until the 1st count source is input after counting start	
	Value written to the TBi register is written to both reload register and counter	
	When counting (after 1st count source input)	
	Value written to the TBi register is written to only reload register	
	(Transferred to counter when reloaded next)	

i = 0 to 5

j = i - 1, except j = 2 if i = 0, j = 5 if i = 3

NOTE:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.

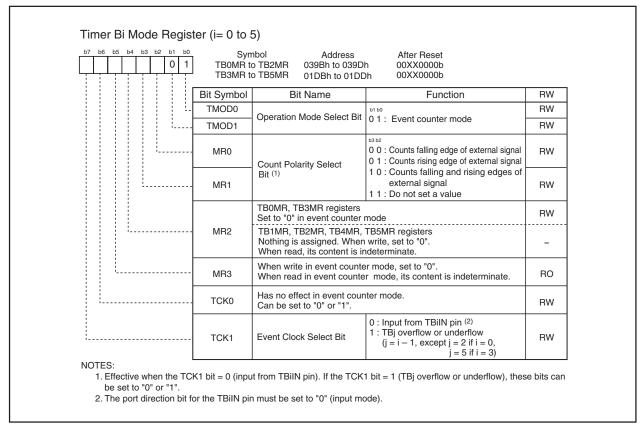
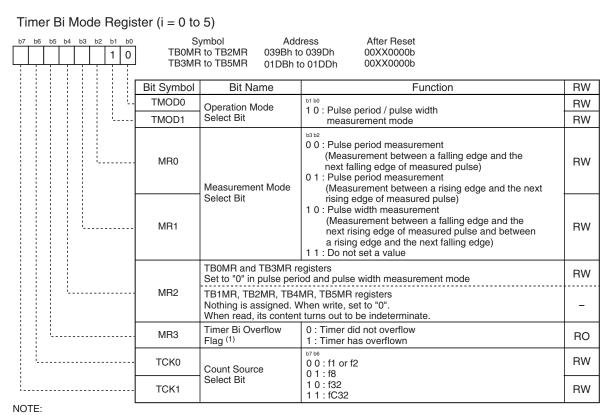


Figure 13.19 TB0MR to TB5MR Registers in Event Counter Mode

M16C/6N Group (M16C/6NL, M16C/6NN)

13.2.3 Pulse Period and Pulse Width Measurement Mode

In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. Table 13.8 lists specifications in pulse period and pulse width measurement mode. Figure 13.20 shows TBiMR register in pulse period and pulse width measurement mode. Figure 13.21 shows the operation timing when measuring a pulse period. Figure 13.22 shows the operation timing when measuring a pulse width.


Table 13.8 Specifications in Pulse Period and Pulse Width Measurement Mode

Item	Specification
Count Source	f1, f2, f8, f32, fC32
Count Operation	• Up-count
	Counter value is transferred to reload register at an effective edge of
	measurement pulse. The counter value is set to "0000h" to continue counting.
Count Start Condition	Set the TBiS bit (1) to "1" (start counting)
Count Stop Condition	Set the TBiS bit to "0" (stop counting)
Interrupt Request Generation Timing	When an effective edge of measurement pulse is input (2)
	• Timer overflow. When an overflow occurs, the MR3 bit in the TBiMR
	register is set to "1" (overflow) simultaneously. The MR3 bit is set to "0"
	(no overflow) by writing to the TBiMR register at the next count timing or
	later after the MR3 bit was set to "1". At this time, make sure the TBiS bit
	is set to "1" (start counting).
TBiIN Pin Function	Measurement pulse input
Read from Timer	Contents of the reload register (measurement result) can be read by reading
	TBi register (3)
Write to Timer	Value written to the TBi register is written to neither reload register nor counter

i = 0 to 5

- 1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.
- 2. Interrupt request is not generated when the first effective edge is input after the timer started counting.
- 3. Value read from the TBi register is indeterminate until the second valid edge is input after the timer starts counting.

^{1.} This flag is indeterminate after reset. When the TBiS bit = 1 (start counting), the MR3 bit is set to "0" (no overflow) by writing to the TBiMR register at the next count timing or later after the MR3 bit was set to "1" (overflow). The MR3 bit cannot be set to "1" in a program. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register, and the TB3S to TB5S bits are assigned to the bit 5 to bit 7 in the TBSR register.

Figure 13.20 TB0MR to TB5MR Registers in Pulse Period and Pulse Width Measurement Mode

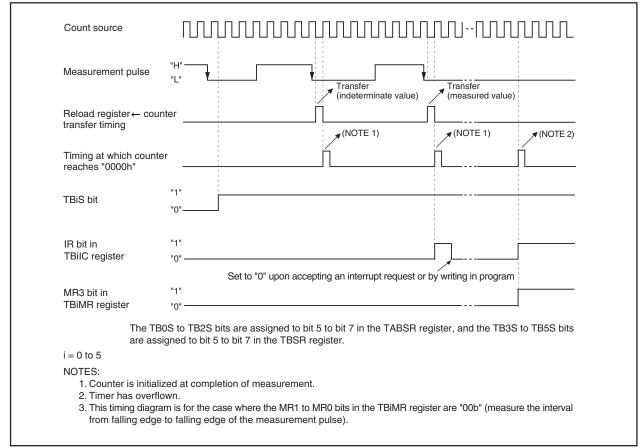


Figure 13.21 Operation Timing When Measuring Pulse Period

Figure 13.22 Operation Timing When Measuring Pulse Width

14. Three-Phase Motor Control Timer Function

Timers A1, A2, A4 and B2 can be used to output three-phase motor drive waveforms. Table 14.1 lists the specifications of the three-phase motor control timer function. Figure 14.1 shows the block diagram for three-phase motor control timer function. Also, the related registers are shown on Figures 14.2 to 14.8.

Table 14.1 Three-Phase Motor Control Timer Function Specifications

Item	Specification
Three-Phase Waveform Output Pin	Six pins $(U, \overline{U}, V, \overline{V}, W, \overline{W})$
Forced Cutoff Input (1)	Input "L" to NMI pin
Used Timers	Timer A4, A1, A2 (used in the one-shot timer mode)
	• Timer A4: U- and $\overline{\text{U}}$ -phase waveform control
	• Timer A1: V- and $\overline{\text{V}}$ -phase waveform control
	• Timer A2: W- and \overline{W} -phase waveform control
	Timer B2 (used in the timer mode)
	Carrier wave cycle control
	Dead time timer (3 eight-bit timer and shared reload register)
	Dead time control
Output Waveform	Triangular wave modulation, Sawtooth wave modification
	 Enable to output "H" or "L" for one cycle
	• Enable to set positive-phase level and negative-phase level respectively
Carrier Wave Cycle	Triangular wave modulation: count source \times (m+1) \times 2
	Sawtooth wave modulation: count source \times (m+1)
	m: Setting value of the TB2 register, 0000h to FFFFh
	Count source: f1, f2, f8, f32, fC32
Three-Phase PWM Output Width	Triangular wave modulation: count source \times n \times 2
	Sawtooth wave modulation: count source \times n
	n: Setting value of the TA4, TA1 and TA2 registers (of the TA4,
	TA41, TA1, TA11, TA2 and TA21 registers when setting the
	INV11 bit to "1"), 0001h to FFFFh
	Count source: f1, f2, f8, f32, fC32
Dead Time	Count source \times p, or no dead time
	p: Setting value of the DTT register, 01h to FFh
	Count source: f1, f2, f1 divided by 2, f2 divided by 2
Active Level	Enable to select "H" or "L"
Positive and Negative-Phase Concurrent	Positive and negative-phases concurrent active disable function
Active Disable Function	Positive and negative-phases concurrent active detect function
Interrupt Frequency	For Timer B2 interrupt, select a carrier wave cycle-to-cycle basis
	through 15 times carrier wave cycle-to-cycle basis

NOTE:

1. Forced cutoff with NMI input is effective when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by NMI input enabled). If an "L" signal is applied to the NMI pin when the IVPCR1 bit is "1", the related pins go to a high-impedance state regardless of which functions of those pins are being used.

Related pins: • P7_2/CLK2/TA1OUT/V

- P7 3/CTS2/RTS2/TA1IN/V
- P7_4/TA2OUT/W/(CLK4)
- P7_5/TA2IN/W/(SOUT4)
- P8_0/TA4OUT/U(SIN4)
- P8 1/TA4IN/U

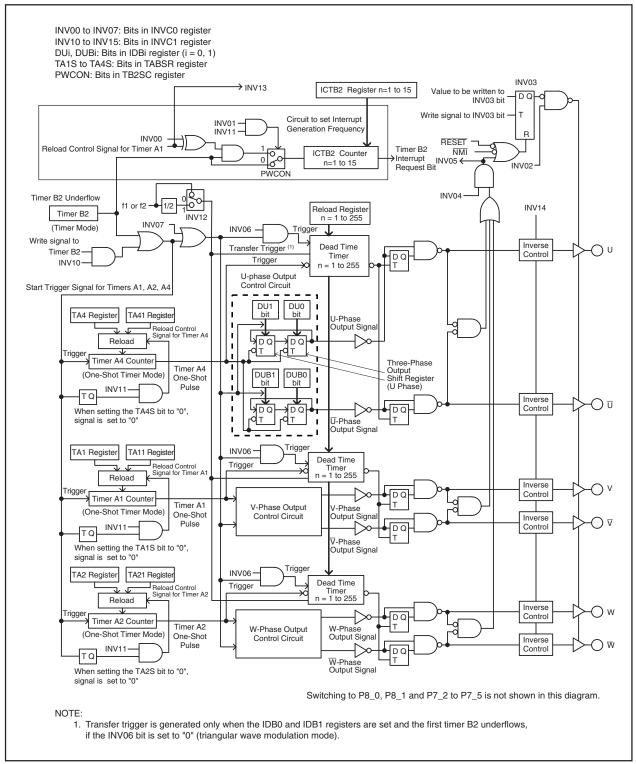
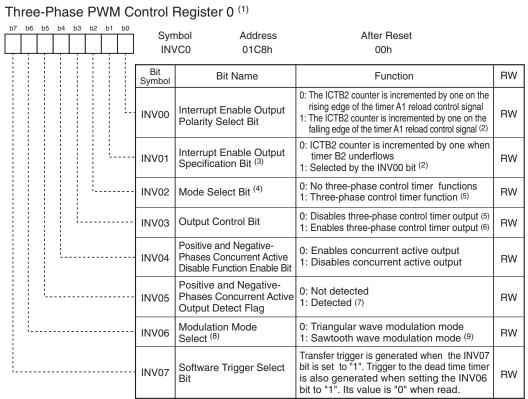



Figure 14.1 Three-Phase Motor Control Timer Function Block Diagram

NOTES:

- Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enable).
 Rewrite the INV00 to INV02 and INV06 bits when the timers A1, A2, A4 and B2 stop.
- 2. The INV00 and INV01 bits are enabled only when the INV11 bit is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 underflows, regardless of INV00 and INV01 bit settings, when the INV11 bit is set to "0" (three-phase mode 0).

When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 underflow.

When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 underflows n-1 times, if n is the value set in the ICTB2 counter. Subsequent interrupts are generated every n times the timer B2 underflows.

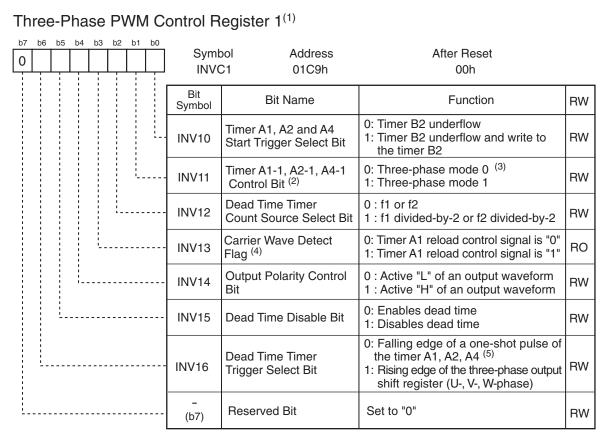
- 3. Set the INV01 bit to "1" after setting the ICTB2 register .
- Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and ICTB2 counter.
- 5. When the INV03 bit is set to "1", the pins applied to U/V/W output three-phase PWM.

The U, \overline{U} , V, \overline{V} , W and \overline{W} pins, including pins shared with other output functions, are all placed in high-impedance states when the following conditions are all met.

- The INV02 bit is set to "1" (three-phase control timer function)
- The INV03 bit to "0" (three-phase control timer output disabled)
- Direction registers of each port are set to "0" (input mode)
- 6. The INV03 bit is set to "0" when the following conditions are all met.
 - Reset
 - A concurrent active state occurs while INV04 bit is set to "1"
 - The INV03 bit is set to "0" by program
 - A signal applied to the NMI pin changes "H" to "L"

When both the INV04 and INV05 bits are set to "1", the INV03 bit is set to "0".

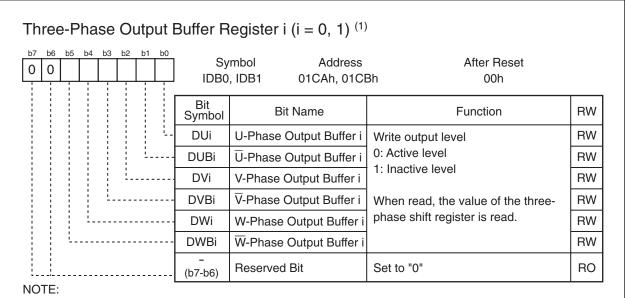
- 7. The INV05 bit cannot be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
- 8. The following table describes how the INV06 bit works.


The fellewing table decembed	now the never bit works.		
Item	INV06 = 0	INV06 = 1	
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode	
Timing to Transfer from the IDB0 and IDB1 Registers to Three- Phase Output Shift Register	Transferred once by generating a transfer trigger after setting the IDB0 and IDB1 registers	Transferred every time a transfer trigger is generated	
Timing to Trigger the Dead Time Timer when the INV16 Bit=0	On the falling edge of a one-shot pulse of the timer A1, A2 or A4	By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4	
INV13 Bit	Enabled when the INV11 bit=1 and the INV06 bit=0	Disabled	

Transfer trigger: Timer B2 underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1

9. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (reload timer B2 with timer B2 underflow).

Figure 14.2 INVC0 Register



- 1. Rewrite the INVC1 register after the PRC1 bit in the PRCR register is set to "1" (write enable). The timers A1, A2, A4, and B2 must be stopped during rewrite.
- 2. The following table lists how the INV11 bit works.

The fellenting table liefer that the first trainer				
Item	JNV11 = 0	INV11 = 1		
Mode	Three-phase mode 0	Three-phase mode 1		
TA11, TA21 and TA41 Registers	Not used	Used		
INV00 and INV01 Bit	Disabled. The ICTB2 counter is incremented whenever the timer B2 underflows	Enabled		
INV13 Bit	Disabled	Enabled when INV11=1 and INV06=0		

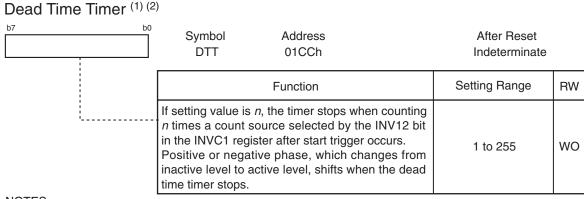
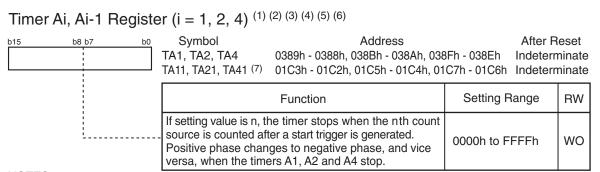

- 3. When the INV06 bit is set to "1" (sawtooth wave modulation mode), set the INV11 bit to "0" (three-phase mode 0). Also, when the INV11 bit is set to "0", set the PWCON bit in the TB2SC register to "0" (timer B2 is reloaded when the timer B2 underflows).
- 4. The INV13 bit is enabled only when the INV06 bit is set to "0" (Triangular wave modulation mode) and the INV11 bit to "1" (three-phase mode 1).
- 5. If the following conditions are all met, set the INV16 bit to "1" (rising edge of the three-phase output shift register).
 - The INV15 bit is set to "0" (dead time timer enabled)
 - The Dij bit (i=U, V or W, j=0, 1) and DiBj bit always have different values when the INV03 bit is set to "1". (The positive-phase and negative-phase always output opposite level signals.) If above conditions are not met, set the INV16 bit to "0" (falling edge of a one-shot pulse of the timer A1, A2, A4).

Figure 14.3 INVC1 Register


1. Values of the IDB0 and IDB1 registers are transferred to the three-phase output shift register by a transfer trigger.

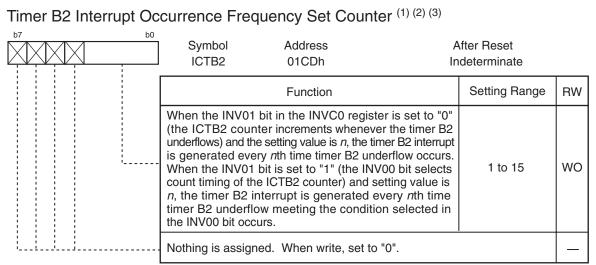
After the transfer trigger occurs, the values written in the IDB0 register determine each phase output signal first. Then the value written in the IDB1 register on the falling edge of timers A1, A2 and A4 one-shot pulse determines each phase output signal.

- 1. Use the MOV instruction to set the DTT register.
- 2. The DTT register is enabled when the INV15 bit in the INVC1 register is set to "0" (dead time enabled). No dead time can be set when the INV15 bit is set to "1" (dead time disabled). The INV06 bit in the INVC0 register determines start trigger of the DTT register.

Figure 14.4 IDB0 and IDB1 Registers and DTT Register

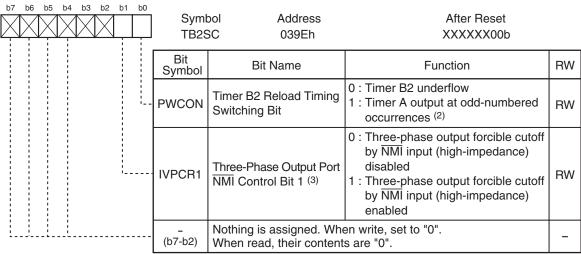
NOTES:

- 1. Use a 16-bit data for read and write.
- 2. If the TAi or TAi1 register is set to "0000h", no counters start and no timer Ai interrupt is generated.
- 3. Use the MOV instruction to set the TAi and TAi1 registers.
- 4. When the INV15 bit in the INVC1 register is set to "0" (dead timer enabled), phase switches from an inactive level to an active level when the dead time timer stops.
- 5. When the INV11 bit in the INVC1 register is set to "0" (three-phase mode 0), the value of the TAi register is transferred to the reload register by a timer Ai start trigger.
 When the INV11 bit is set to "1" (three-phase mode 1), the value of the TAi1 register is first transferred to the reload register by a timer Ai start trigger. Then, the value of the TAi register is transferred by the next trigger. The values of the TAi1 and TAi registers are transferred alternately to the reload register with every
- 6. Do not write to these registers when the timer B2 underflows.
- 7. Follow the procedure below to set the TAi1 register.
 - (a) Write value to the TAi1 register,


timer Ai start trigger.

- (b) Wait one timer Ai count source cycle, and
- (c) Write the same value as (a) to the TAi1 register.

Use a 16-bit data for read and write.


Figure 14.5 TA1, TA2, TA4, TA11, TA21 and TA41 Registers, and TB2 Register

NOTES:

- 1. Use the MOV instruction to set the ICTB2 register.
- 2. If the INV01 bit is set to "1", set the ICTB2 register when the TB2S bit is set to "0" (timer B2 counter stopped), If the INV01 bit is set to "0" and the TB2S bit to "1" (timer B2 counter start), do not set the ICTB2 register when the timer B2 underflows.
- 3. If the INV00 bit is set to "1", the first interrupt is generated when the timer B2 underflows *n-1* times, *n* being the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 underflows.

Timer B2 Special Mode Register (1)

NOTES:

- 1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enabled).
- 2. If the INV11 bit in the INVC1 register is "0" (three-phase mode 0) or the INV06 bit in the INVC0 register is "1" (sawtooth wave modulation mode), set this bit to "0" (timer B2 underflow).
- 3. Related pins are U(P8_0/TA4OUT), \overline{U} (P8_1/TA4IN), V(P7_2/CLK2/TA1OUT), \overline{V} (P7_3/ $\overline{CTS2}$ / $\overline{RTS2}$ /TA1IN), W(P7_4/TA2OUT), \overline{W} (P7_5/TA2IN). If a low-level signal is applied to the \overline{NMI} pin when the IVPCR1 bit = 1, the target pins go to a high-impedance state regardless of which functions of those pins are being used.

After forced interrupt (cutoff), input "H" to the $\overline{\text{NMI}}$ pin and set the IVPCR1 bit to "0": this forced cutoff will be reset.

Figure 14.6 ICTB2 Register and TB2SC Register

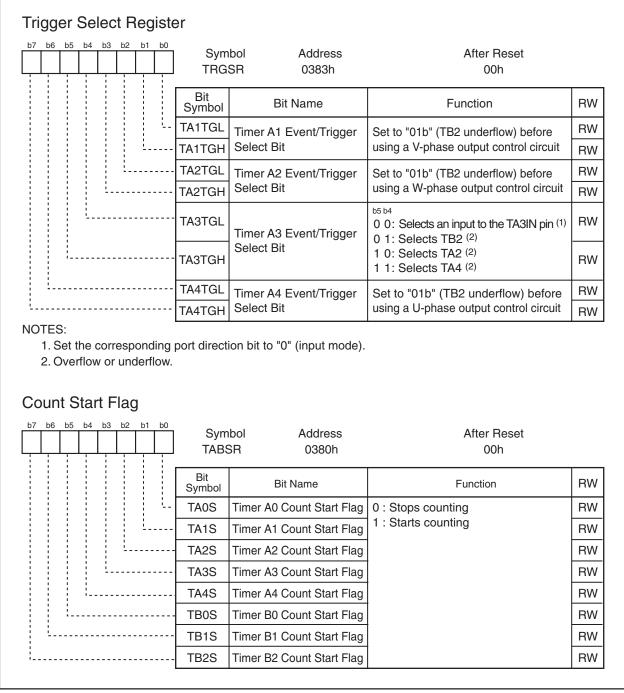


Figure 14.7 TRGSR Register and TRBSR Register

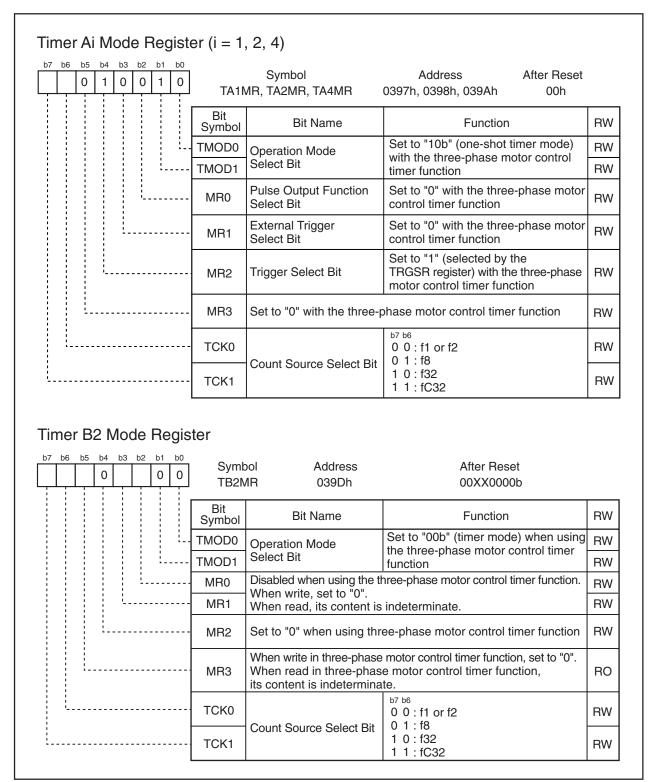


Figure 14.8 TA1MR, TA2MR and TA4MR Registers, and TB2MR Register

The three-phase motor control timer function is enabled by setting the INV02 bit in the INVC0 register to "1". When this function is selected, timer B2 is used to control the carrier wave, and timers A4, A1 and A2 are used to control three-phase PWM outputs $(U, \overline{U}, V, \overline{V}, W \text{ and } \overline{W})$. The dead time is controlled by a dedicated dead-time timer. Figure 14.9 shows the example of triangular modulation waveform and Figure 14.10 shows the example of sawtooth modulation waveform.

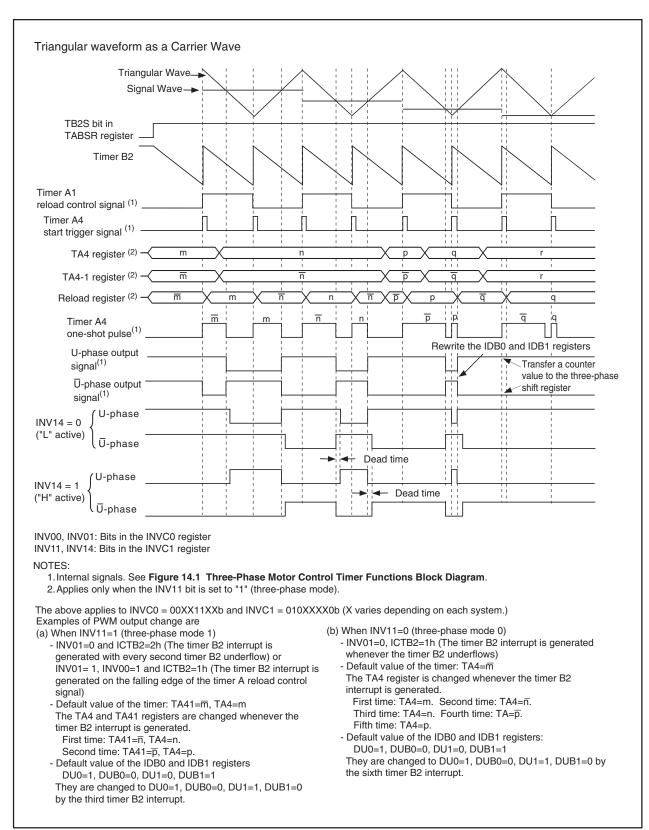


Figure 14.9 Triangular Wave Modulation Operation

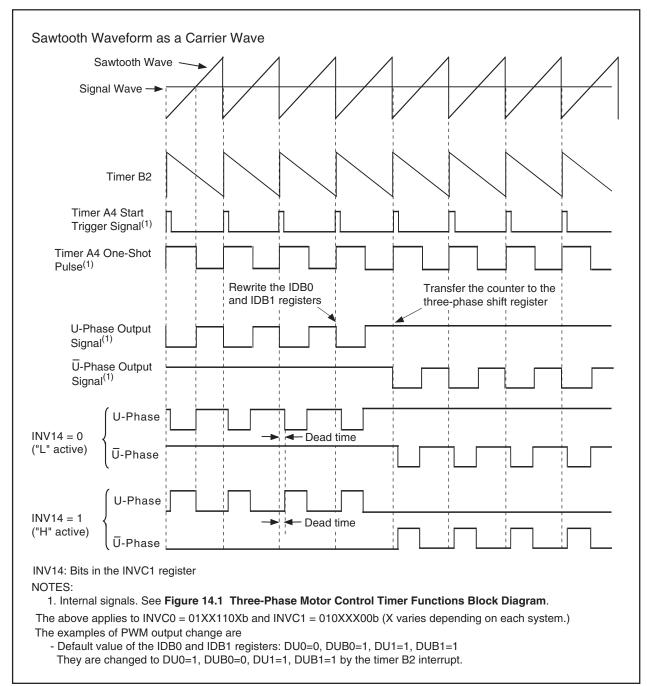


Figure 14.10 Sawtooth Wave Modulation Operation

15. Serial Interface

Serial interface is configured with 7 channels: UART0 to UART2 and SI/O3 to SI/O6 (1).

NOTE:

1.100-pin version supports 5 channels; UART0 to UART2, SI/O3, SI/O4 128-pin version supports 7 channels; UART0 to UART2, SI/O3 to SI/O6

15.1 UARTi (i = 0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other. Figures 15.1 to 15.3 show the block diagram of UARTi. Figure 15.4 shows the block diagram of the UARTi transmit/receive.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 1 (I2C mode)
- Special mode 2
- Special mode 3 (Bus collision detection function, IE mode)
- Special mode 4 (SIM mode): UART2

Figures 15.5 to 15.10 show the UARTi-related registers.

Refer to tables listing each mode for register setting.

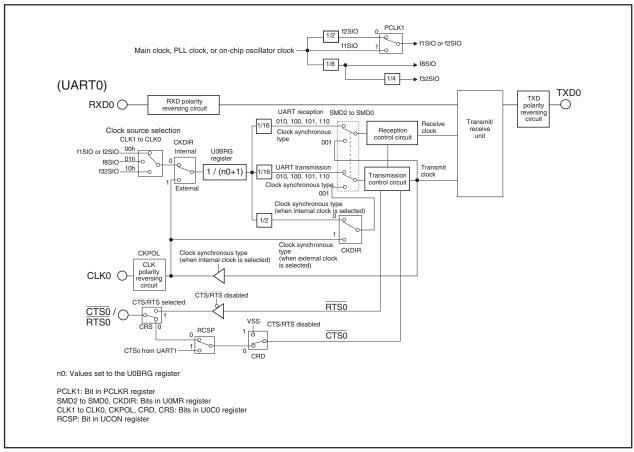


Figure 15.1 UART0 Block Diagram

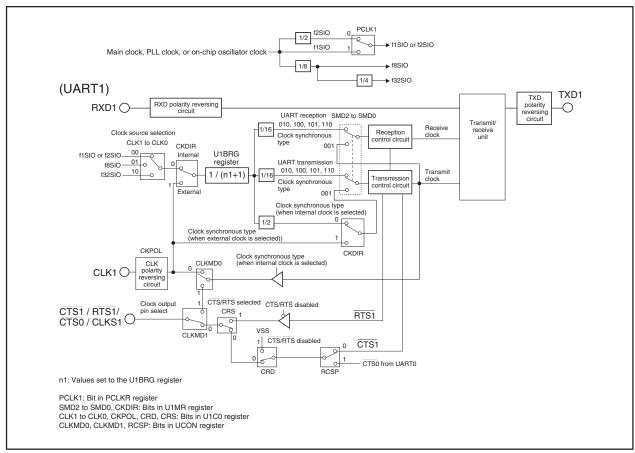


Figure 15.2 UART1 Block Diagram

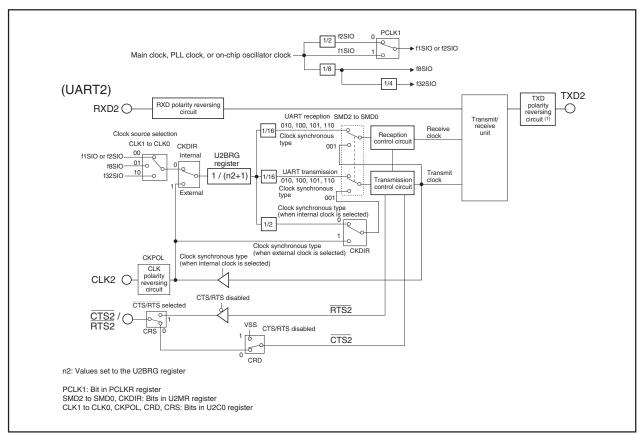


Figure 15.3 UART2 Block Diagram

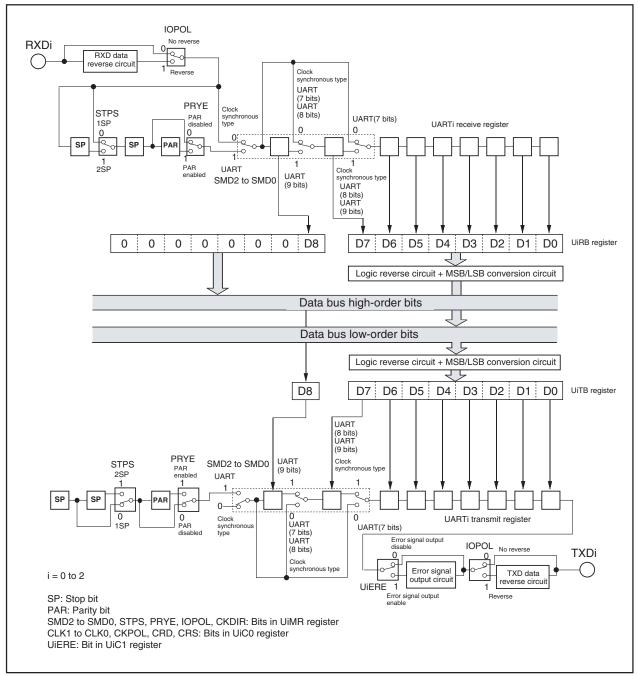


Figure 15.4 UARTi Transmit/Receive Unit

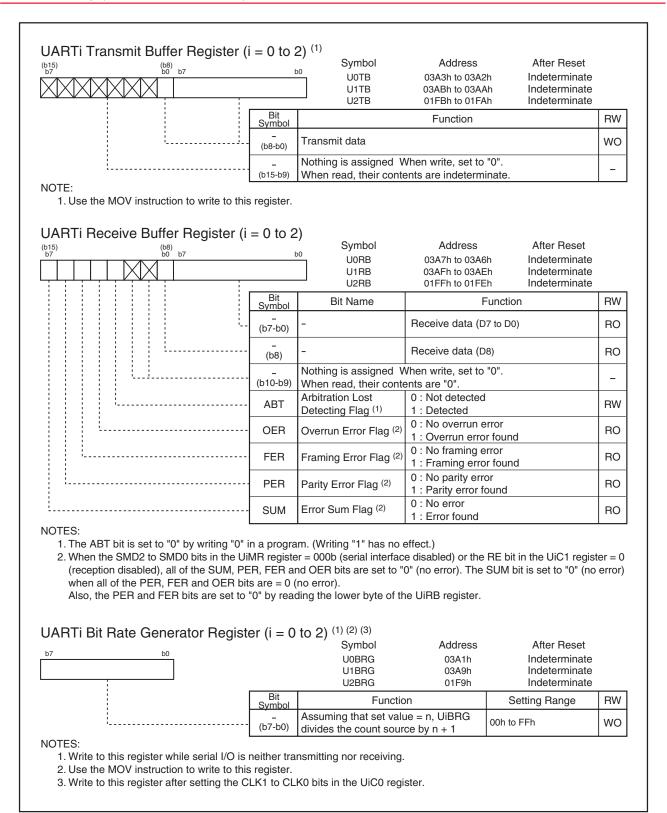
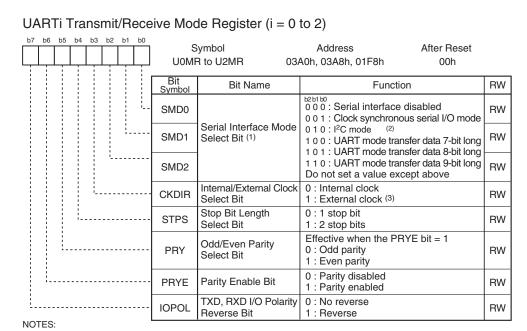
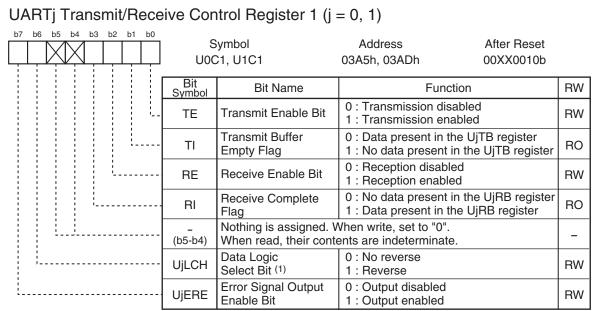



Figure 15.5 U0TB to U2TB Registers, U0RB to U2RB Registers, and U0BRG to U2BRG Registers

- 1. To receive data, set the corresponding port direction bit for each RXDi pin to "0" (input mode).
- 2. Set the corresponding port direction bit for SCL and SDA pins to "0" (input mode). 3. Set the corresponding port direction bit for each CLKi pin to "0" (input mode).

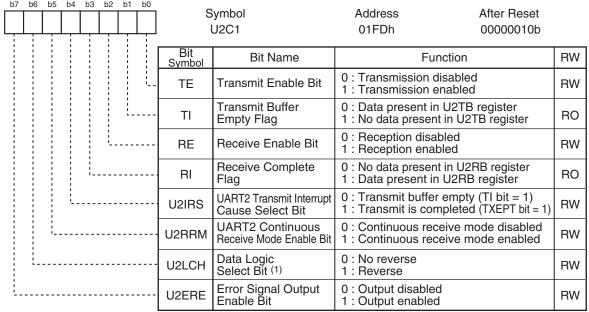

After Reset Symbol Address U0C0 to U2C0 03A4h, 03ACh, 01FCh 00001000b RW Bit Name Function 0 0 : f1SIO or f2SIO is selected RW CLK₀ BRG Count Source 0 1: f8SIO is selected Select Bit (5) 1 0: f32SIO is selected CI K1 RW 11: Do not set a value Effective when CRD = 0 CTS/RTS Function **CRS** 0: CTS function is selected (2) RW Select Bit (1) 1: RTS function is selected 0: Data present in transmit register (during transmission) Transmit Register **TXEPT** RO 1 : No data present in transmit register **Empty Flag** (transmission completed) CTS/RTS function enabled CTS/RTS Disable Bit 1: CTS/RTS function disabled CRD RW (P6_0, P6_4, P7_3 can be used as I/O ports) 0: TXDi/SDAi and SCLi pins are CMOS output Data Output 1 : TXDi/SDAi and SCLi pins are NCH RW Select Bit (3) N channel open-drain output 0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge **CLK Polarity CKPOL** RW Transmit data is output at rising edge Select Bit of transfer clock and receive data is input at falling edge Transfer Format 0: LSB first **UFORM** RW 1: MSB first Select Bit (4)

UARTi Transmit/Receive Control Register 0 (i = 0 to 2)

- 1. CTS1/RTS1 can be used when the CLKMD1 bit in the UCON register = 0 (only CLK1 output) and the RCSP bit in the UCON register = 0 (CTS0/RTS0 not separated).
- 2. Set the corresponding port direction bit for each CTSi pin to "0" (input mode)
- SCL2(P7_1) is N channel open-drain output. The NCH bit in the U2C0 register is N channel open-drain output regardless of the NCH bit.
- 4. The UFORM bit is enabled when the SMD2 to SMD0 bits in the UiMR register are set to "001b" (clock synchronous serial I/O mode), or "101b" (UART mode, 8-bit transfer data).
 Set this bit to "1" when the SMD2 to SMD0 bits are set to "010b" (I²C mode), and to "0" when the SMD2 to SMD0 bits are set to "100b" (UART mode, 7-bit transfer data) or "110b" (UART mode, 9-bit transfer data).

5. When changing the CLK1 to CLK0 bits, set the UiBRG register.

Figure 15.6 U0MR to U2MR Registers and U0C0 to U2C0 Registers

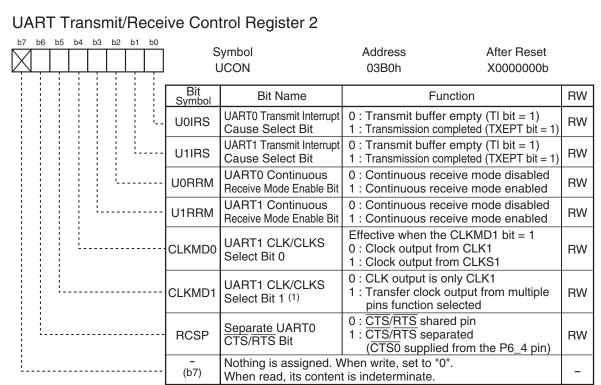


NOTE:

1. The UjLCH bit is enabled when the SMD2 to SMD0 bits in the UjMR register are set to "001b" (clock synchronous serial I/O mode), "100b" (UART mode, 7-bit transfer data) or "101b" (UART mode, 8-bit transfer data).

Set this bit to "0" when the SMD2 to SMD0 bits are set to "010b" (I²C mode) or "110b" (UART mode, 9-bit transfer data).

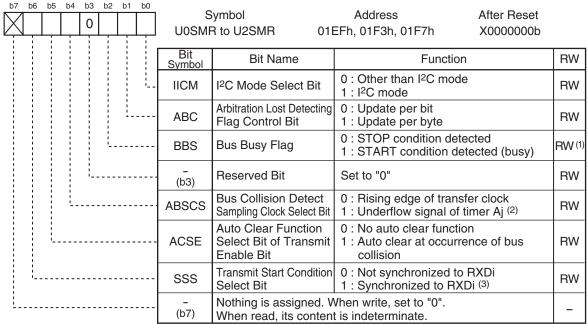
UART2 Transmit/Receive Control Register 1



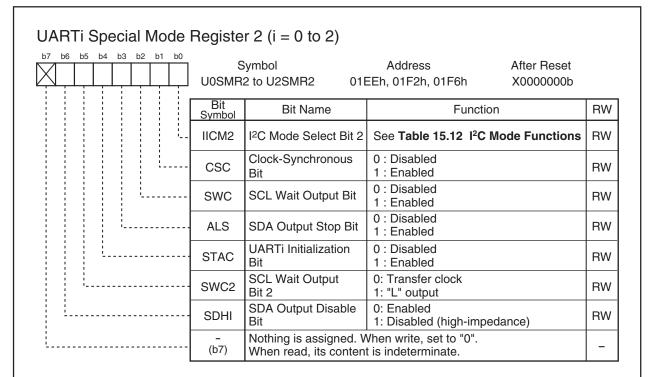
NOTE:

1. The U2LCH bit is enabled when the SMD2 to SMD0 bits in the U2MR register are set to "001b" (clock synchronous serial I/O mode), "100b" (UART mode, 7-bit transfer data) or "101b" (UART mode, 8-bit transfer data).

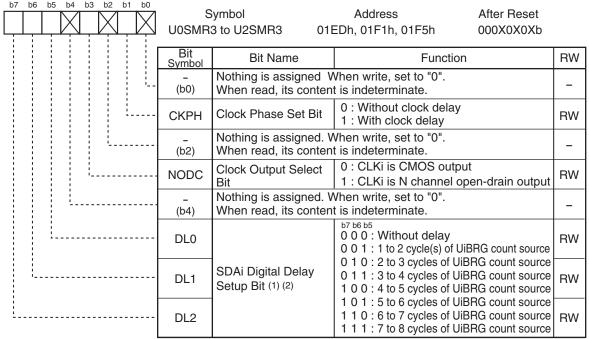
Set this bit to "0" when the SMD2 to SMD0 bits are set to "010b" (I²C mode) or "110b" (UART mode, 9-bit transfer data) .


Figure 15.7 U0C1, U1C1 Registers and U2C1 Register

NOTE:


- 1. When using multiple transfer clock output pins, make sure the following conditions are met:
 - •The CKDIR bit in the U1MR register = 0 (internal clock)

UARTi Special Mode Register (i = 0 to 2)



- 1. The BBS bit is set to "0" by writing "0" in a program. (Writing "1" has no effect.).
- 2. Underflow signal of timer A3 in UART0, underflow signal of timer A4 in UART1, underflow signal of timer A0 in UART2.
- 3. When a transfer begins, the SSS bit is set to "0" (not synchronized to RXDi).

Figure 15.8 UCON Register and U0SMR to U2SMR Registers

UARTi Special Mode Register 3 (i = 0 to 2)

- 1. The DL2 to DL0 bits are used to generate a delay in SDAi output by digital means during I²C mode. In other than I²C mode, set these bits to "000b" (no delay).
- 2. The amount of delay varies with the load on SCLi and SDAi pins. Also, when using an external clock, the amount of delay increases by about 100 ns.

Figure 15.9 U0SMR2 to U2SMR2 Registers and U0SMR3 to U2SMR3 Registers

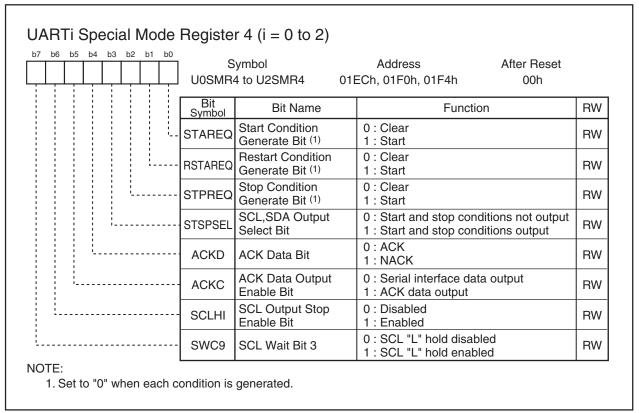


Figure 15.10 U0SMR4 to U2SMR4 Registers

15.1.1 Clock Synchronous Serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 15.1 lists the specifications of the clock synchronous serial I/O mode. Table 15.2 lists the registers used in clock synchronous serial I/O mode and the register values set.

Table 15.1 Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer Clock	The CKDIR bit in the UiMR register = 0 (internal clock) : fj/ 2(n+1)
	• fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh
	The CKDIR bit = 1 (external clock) : Input from CLKi pin
Transmission, Reception Control	Selectable from CTS function, RTS function or CTS/RTS function disabled
Transmission Start Condition	Before transmission can start, the following requirements must be met (1)
	The TE bit in the UiC1 register = 1 (transmission enabled)
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)
	If CTS function is selected, input on the CTSi pin = L
Reception Start Condition	Before reception can start, the following requirements must be met (1)
	• The RE bit in the UiC1 register = 1 (reception enabled)
	• The TE bit in the UiC1 register = 1 (transmission enabled)
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Interrupt Request	For transmission, one of the following conditions can be selected
Generation Timing	• The UiIRS bit (2) = 0 (transmit buffer empty): when transferring data from the
	UiTB register to the UARTi transmit register (at start of transmission)
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	• When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error Detection	Overrun error (3)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select Function	CLK polarity selection
	Transfer data input/output can be selected to occur synchronously with the rising or
	the falling edge of the transfer clock
	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Continuous receive mode selection
	Reception is enabled immediately by reading the UiRB register
	Switching serial data logic
	This function reverses the logic value of the transmit/receive data
	Transfer clock output from multiple pins selection (UART1)
	The output pin can be selected in a program from two UART1 transfer clock pins that
	have been set
	Separate CTS/RTS pins (UART0)
	CTS0 and RTS0 are input/output from separate pins

i = 0 to 2 NOTES:

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
- 2. The U0IRS and U1IRS bits respectively are bits 0 and 1 in the UCON register; the U2IRS bit is bit 4 in the U2C1 register.
- 3. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.

Table 15.2 Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function
UiTB (1)	0 to 7	Set transmission data
UiRB (1)	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR (1)	SMD2 to SMD0	Set to "001b"
	CKDIR	Select the internal clock or external clock
	IOPOL	Set to "0"
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TXDi pin output mode
	CKPOL	Select the transfer clock polarity
	UFORM	Select the LSB first or MSB first
UiC1	TE	Set this bit to "1" to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (2)	Select the source of UART2 transmit interrupt
	U2RRM ⁽²⁾	Set this bit to "1" to use continuous receive mode
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 2	Set to "0"
	NODC	Select clock output mode
	4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
-	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode
	CLKMD0	Select the transfer clock output pin when the CLKMD1 bit = 1
	CLKMD1	Set this bit to "1" to output UART1 transfer clock from two pins
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P6_4 pin
	7	Set to "0"

i = 0 to 2

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in clock synchronous serial I/O mode.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Table 15.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Table 15.3 shows pin functions for the case where the multiple transfer clock output pin select function is deselected. Table 15.4 lists the P6_4 pin functions during clock synchronous serial I/O mode.

Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TXDi pin outputs an "H".

Figure 15.11 shows the transmit/receive timings during clock synchronous serial I/O mode.

Table 15.3 Pin Functions (When Not Select Multiple Transfer Clock Output Pin Function)

	•	
Pin Name	Function	Method of Selection
TXDi	Serial Data Output	(Outputs dummy data when performing reception only)
(P6_3, P6_7, P7_0)		
RXDi	Serial Data Input	PD6_2 and PD6_6 bits in PD6 register = 0
(P6_2, P6_6, P7_1)		PD7_1 bit in PD7 register = 0
		(Can be used as an input port when performing transmission only)
CLKi	Transfer Clock Output	CKDIR bit in UiMR register = 0
(P6_1, P6_5, P7_2)	Transfer Clock Input	CKDIR bit = 1
		PD6_1 and PD6_5 bits in PD6 register = 0
		PD7_2 bit in PD7 register = 0
CTSi/RTSi	CTS Input	CRD bit in UiC0 register = 0
(P6_0, P6_4, P7_3)		CRS bit in UiC0 register = 0
		PD6_0 and PD6_4 bits in PD6 register = 0
		PD7_3 bit in PD7 register = 0
	RTS Output	CRD bit = 0
		CRS bit = 1
	I/O Port	CRD bit = 1

i = 0 to 2

Table 15.4 P6_4 Pin Functions

<u> </u>						
	Bit set Value					
Pin Function	U1C0 Register		UCON Register			PD6 Register
	CRD bit	CRS bit	RCSP bit	CLKMD1 bit	CLKMD0 bit	PD6_4 bit
P6_4	1	-	0	0	-	Input: 0, Output: 1
CTS1	0	0	0	0	-	0
RTS1	0	1	0	0	-	-
CTS0 (1)	0	0	1	0	-	0
CLKS1	-	-	-	1 (2)	1	-

-: "0" or "1"

- 1. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).
- 2. When the CLKMD1 bit = 1 and the CLKMD0 bit = 0, the following logic levels are output:
 - High if the CLKPOL bit in the U1C0 register = 0
 - Low if the CLKPOL bit = 1

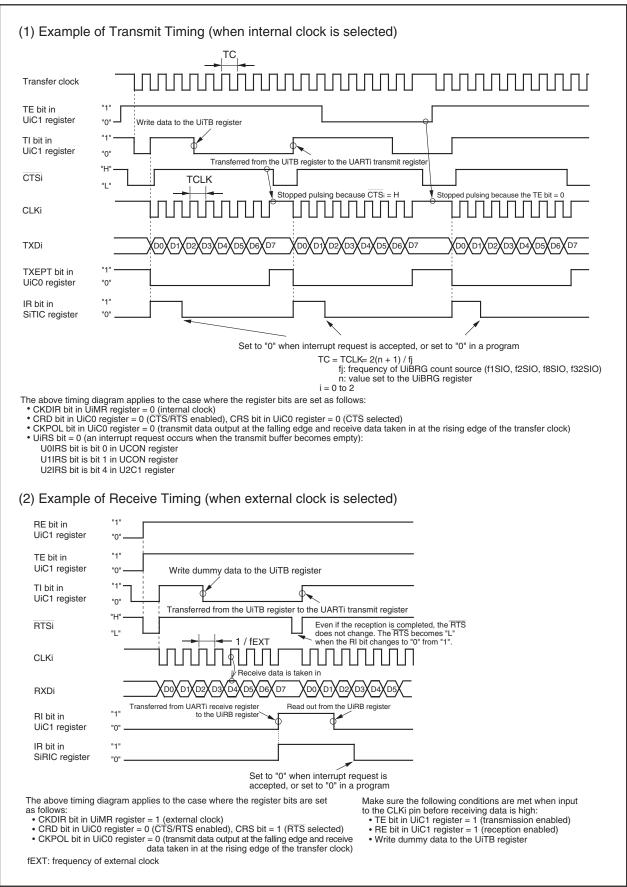


Figure 15.11 Transmit and Receive Operation

15.1.1.1 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

- Resetting the UiRB register (i = 0 to 2)
 - (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (serial interface disabled)
 - (3) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (clock synchronous serial I/O mode)
 - (4) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i = 0 to 2)
 - (1) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (serial interface disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (clock synchronous serial I/O mode)
 - (3) "1" (transmission enabled) is written to the TE bit in the UiC1 register, regardless of the TE bit

15.1.1.2 CLK Polarity Select Function

Use the CKPOL bit in the UiC0 register (i = 0 to 2) to select the transfer clock polarity. Figure 15.12 shows the polarity of the transfer clock.

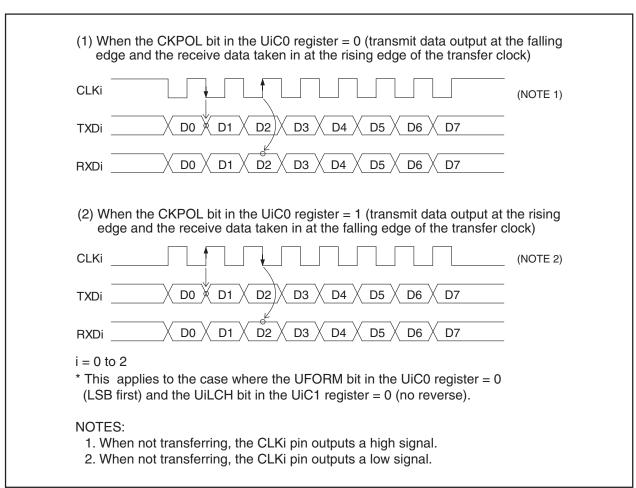


Figure 15.12 Transfer Clock Polarity

15.1.1.3 LSB First/MSB First Select Function

Use the UFORM bit in the UiC0 register (i = 0 to 2) to select the transfer format.

Figure 15.13 shows the transfer format.

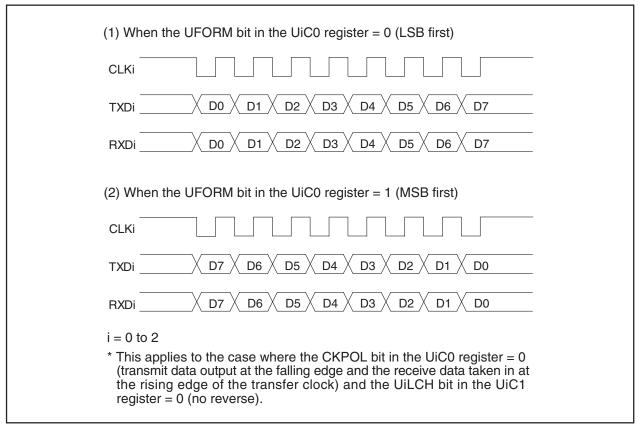


Figure 15.13 Transfer Format

15.1.1.4 Continuous Receive Mode

In continuous receive mode, receive operation becomes enable when the receive buffer register is read. It is not necessary to write dummy data into the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operation mode.

When the UiRRM bit (i = 0 to 2) = 1 (continuous receive mode), the TI bit in the UiC1 register is set to "0" (data present in UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit = 1, do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are bit 2 and bit 3 in the UCON register, respectively, and the U2RRM bit is bit 5 in the U2C1 register.

15.1.1.5 Serial Data Logic Switching Function

When the UiLCH bit in the UiC1 register (i = 0 to 2) = 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 15.14 shows serial data logic.

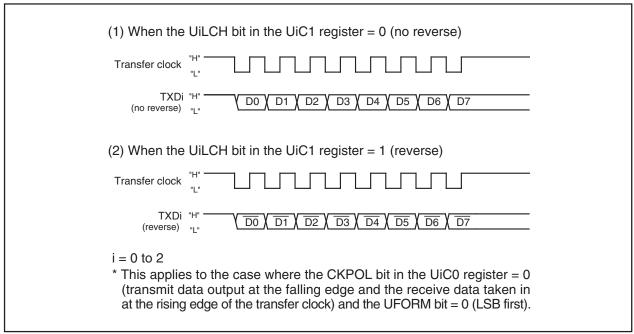


Figure 15.14 Serial Data Logic Switching

15.1.1.6 Transfer Clock Output From Multiple Pins (UART1)

Use the CLKMD1 to CLKMD0 bits in the UCON register to select one of the two transfer clock output pins. Figure 15.15 shows the transfer clock output from the multiple pins function usage. This function can be used when the selected transfer clock for UART1 is an internal clock.

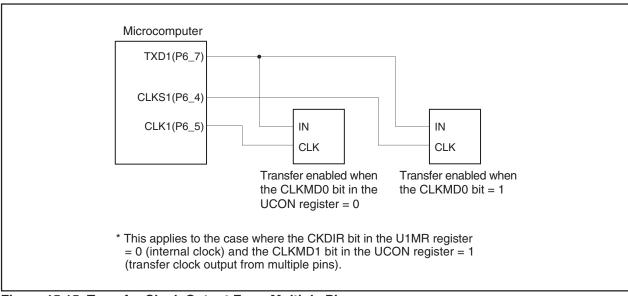


Figure 15.15 Transfer Clock Output From Multiple Pins

15.1.1.7 CTS/RTS Function

When the CTS function is used transmit and receive operation start when "L" is applied to the CTSi/RTSi (i = 0 to 2) pin. Transmit and receive operation begins when the CTSi/RTSi pin is held "L". If the "L" signal is switched to "H" during a transmit or receive operation, the operation stops before the next data. When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the microcomputer is

ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

- CRD bit in UiC0 register = 1 (CTS/RTS function disabled) CTSi/RTSi pin is programmable I/O function
- CRD bit = 0, CRS bit in UiC0 register = 0 (CTS function is selected) CTSi/RTSi pin is CTS function
- CRD bit = 0, CRS bit = 1 (RTS function is selected)

CTSi/RTSi pin is RTS function

15.1.1.8 CTS/RTS Separate Function (UART0)

This function separates CTS0/RTS0, outputs RTS0 from the P6_0 pin, and accepts as input the CTS0 from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (enables UART0 CTS/RTS)
- CRS bit in U0C0 register = 1 (outputs UART0 RTS)
- CRD bit in U1C0 register = 0 (enables UART1 CTS/RTS)
- CRS bit in U1C0 register = 0 (inputs UART1 CTS)
- RCSP bit in UCON register = 1 (inputs CTS0 from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used.

Figure 15.16 shows CTS/RTS separate function usage.

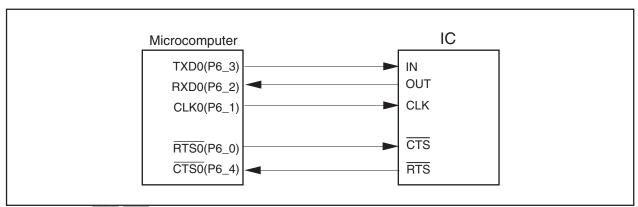


Figure 15.16 CTS/RTS Separate Function

M16C/6N Group (M16C/6NL, M16C/6NN)

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Table 15.5 lists the specifications of the UART mode. Table 15.6 lists the registers used in

UART mode and the register values set.

Table 15.5 UART Mode Specifications

Item	Specification
Transfer Data Format	Character bit (transfer data): Selectable from 7, 8 or 9 bits
	• Start bit: 1 bit
	Parity bit: Selectable from odd, even, or none
	• Stop bit: Selectable from 1 or 2 bits
Transfer Clock	• CKDIR bit in UiMR register = 0 (internal clock) : fj/ 16(n+1)
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh
	• The CKDIR bit = 1 (external clock) : fEXT/16(n+1)
	fEXT: Input from CLKi pin. n:Setting value of the UiBRG register 00h to FFh
Transmission, Reception Control	Selectable from CTS function, RTS function or CTS/RTS function disabled
Transmission Start Condition	Before transmission can start, the following requirements must be met
	• The TE bit in the UiC1 register = 1 (transmission enabled)
	• The TI bit in the UiC1 register = 0 (data present in UiTB register)
	• If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin = L
Reception Start Condition	Before reception can start, the following requirements must be met
	• The RE bit in the UiC1 register = 1 (reception enabled)
	Start bit detection
Interrupt Request	For transmission, one of the following conditions can be selected
Generation Timing	• The UiIRS bit (1) = 0 (transmit buffer empty): when transferring data from the UiTB register
	to the UARTi transmit register (at start of transmission)
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data
	from the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register
	(at completion of reception)
Error Detection	Overrun error (2)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the bit one before the last stop bit of the next data
	• Framing error (3)
	This error occurs when the number of stop bits set is not detected
	• Parity error (3)
	This error occurs when if parity is enabled, the number of 1's in parity and character
	bits does not match the number of 1's set
	Error sum flag
	This flag is set to "1" when any of the overrun, framing, or parity errors occur
Select Function	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7 can
	be selected
	Serial data logic switch
	This function reverses the logic of the transmit/receive data. The start and stop bits are not reversed.
	• TXD, RXD I/O polarity switch
	This function reverses the polarities of the TXD pin output and RXD pin input.
	The logic levels of all I/O data is reversed.
	• Separate CTS/RTS pins (UART0)
1	CTS0 and RTS0 are input/output from separate pins

i = 0 to 2NOTES:

- 1. The U0IRS and U1IRS bits are bits 0 and 1 in the UCON register. The U2IRS bit is bit 4 in the U2C1 register.
- 2. If an overrun error occurs, the value of the UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Table 15.6 Registers to Be Used and Settings in UART Mode

Register	Bit	Function
UiTB	0 to 8	Set transmission data (1)
UiRB	0 to 8	Reception data can be read (1)
	OER,FER,PER,SUM	Error flag
UiBRG	0 to 7	Set a transfer rate
UiMR	SMD2 to SMD0	Set these bits to "100b" when transfer data is 7-bit long
		Set these bits to "101b" when transfer data is 8-bit long
		Set these bits to "110b" when transfer data is 9-bit long
	CKDIR	Select the internal clock or external clock
	STPS	Select the stop bit
	PRY, PRYE	Select whether parity is included and whether odd or even
	IOPOL	Select the TXD/RXD input/output polarity
UiC0	CLK0, CLK1	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TXDi pin output mode
	CKPOL	Set to "0"
	UFORM	LSB first or MSB first can be selected when transfer data is 8-bit long. Set this
		bit to "0" when transfer data is 7- or 9-bit long.
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (2)	Select the source of UART2 transmit interrupt
	U2RRM (2)	Set to "0"
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because the CLKMD1 bit = 0
	CLKMD1	Set to "0"
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P6_4 pin
	7	Set to "0"

i = 0 to 2

- 1. The bits used for transmit/receive data are as follows:
 - Bit 0 to bit 6 when transfer data is 7-bit long
 - Bit 0 to bit 7 when transfer data is 8-bit long
 - Bit 0 to bit 8 when transfer data is 9-bit long.
- 2. Set bit 4 to bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are included in the UCON register.

Table 15.7 lists the functions of the input/output pins during UART mode. Table 15.8 lists the P6_4 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TXDi pin outputs an "H".

Figure 15.17 shows the typical transmit timings in UART mode. Figure 15.18 shows the typical receive timing in UART mode.

Table 15.7 I/O Pin Functions

Pin Name	Function	Method of Selection
TXDi	Serial Data Output	(Outputs "H" when performing reception only)
(P6_3, P6_7, P7_0)		
RXDi	Serial Data Input	PD6_2 and PD6_6 bits in PD6 register = 0
(P6_2, P6_6, P7_1)		PD7_1 bit in PD7 register = 0
		(Can be used as an input port when performing transmission only)
CLKi	I/O Port	CKDIR bit in UiMR register = 0
(P6_1, P6_5, P7_2)	Transfer Clock Input	CKDIR bit in UiMR register = 1
		PD6_1 and PD6_5 bits in PD6 register = 0
		PD7_2 bit in PD7 register = 0
CTSi/RTSi	CTS Input	CRD bit in UiC0 register = 0
(P6_0, P6_4, P7_3)		CRS bit in UiC0 register = 0
		PD6_0 and PD6_4 bits in PD6 register = 0
		PD7_3 bit in PD7 register = 0
	RTS Output	CRD bit = 0
		CRS bit = 1
	I/O Port	CRD bit = 1

i = 0 to 2

Table 15.8 P6_4 Pin Functions

Pin Function	Bit set Value				
	U1C0 Register		UCON Register		PD6 Register
	CRD bit	CRS bit	RCSP bit	CLKMD1 bit	PD6_4 bit
P6_4	1	-	0	0	Input: 0, Output: 1
CTS1	0	0	0	0	0
RTS1	0	1	0	0	-
CTS0 (1)	0	0	1	0	0

^{-: &}quot;0" or "1"

NOTE:

1. In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).

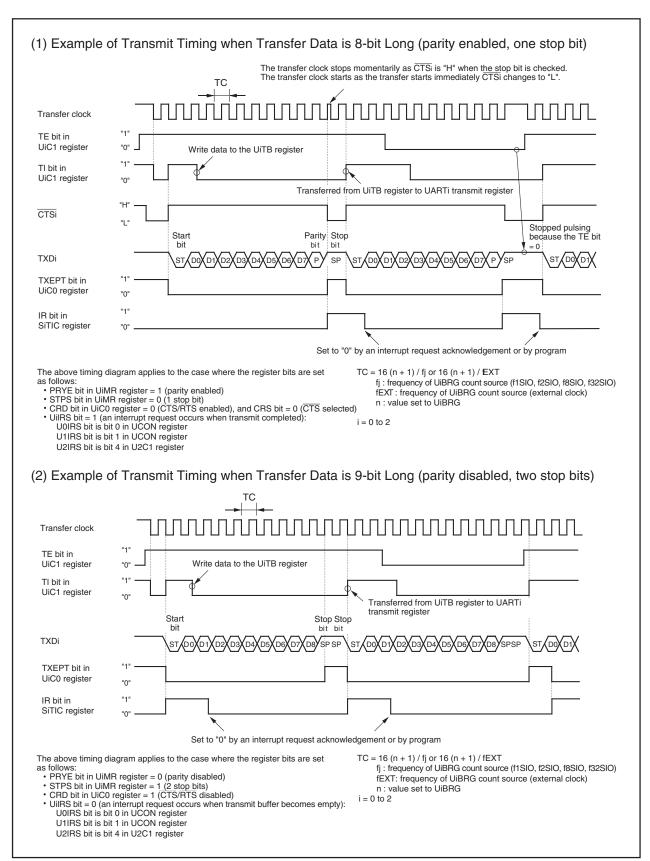


Figure 15.17 Transmit Operation

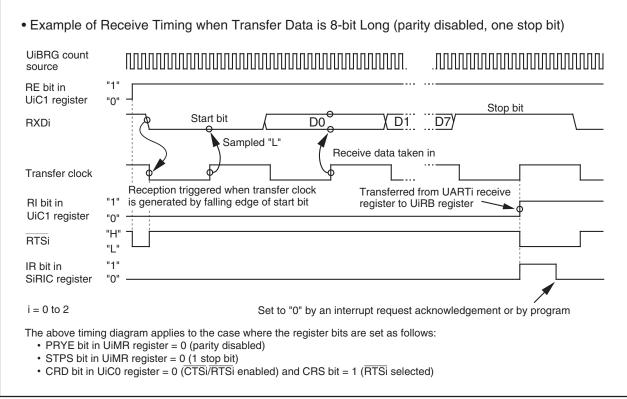


Figure 15.18 Receive Operation

15.1.2.1 Bit Rates

In UART mode, the frequency set by the UiBRG register (i = 0 to 2) divided by 16 become the bit rates. Table 15.9 lists example of bit rates and settings.

Table 15.9 Example of Bit Rates and Settings

	•						
D., .	0 10	Peripheral Function Clock: 16MHz		Peripheral Function Clock: 20MHz		Peripheral Function Clock: 24MHz	
Bit-rate		Set Value of	Actual Time	Set Value of	Actual Time	Set Value of	Actual Time
(bps)	of BRG	BRG: n	(bps)	BRG: n	(bps)	BRG: n	(bps)
1200	f8	103 (67h)	1202	129 (81h)	1202	155 (9Bh)	1202
2400	f8	51 (33h)	2404	64 (40h)	2404	77 (4Dh)	2404
4800	f8	25 (19h)	4808	32 (20h)	4735	38 (26h)	4808
9600	f1	103 (67h)	9615	129 (81h)	9615	155 (9Bh)	9615
14400	f1	68 (44h)	14493	86 (56h)	14368	103 (67h)	14423
19200	f1	51 (33h)	19231	64 (40h)	19231	77 (4Dh)	19231
28800	f1	34 (22h)	28571	42 (2Ah)	29070	51 (33h)	28846
31250	f1	31 (1Fh)	31250	39 (27h)	31250	47 (2Fh)	31250
38400	f1	25 (19h)	38462	32 (20h)	37879	38 (26h)	38462
51200	f1	19 (13h)	50000	23 (17h)	52083	28 (1Ch)	51724

15.1.2.2 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in UART mode, follow the procedures below.

- Resetting the UiRB register (i = 0 to 2)
 - (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
 - (2) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i = 0 to 2)
 - (1) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (serial interface disabled)
 - (2) Set the SMD2 to SMD0 bits in the UiMR register to "001b", "101b", "110b"
 - (3) "1" (transmission enabled) is written to the TE bit in the UiC1 register, regardless of the TE bit

15.1.2.3 LSB First/MSB First Select Function

As shown in Figure 15.19, use the UFORM bit in the UiC0 register to select the transfer format. This function is valid when transfer data is 8-bit long.

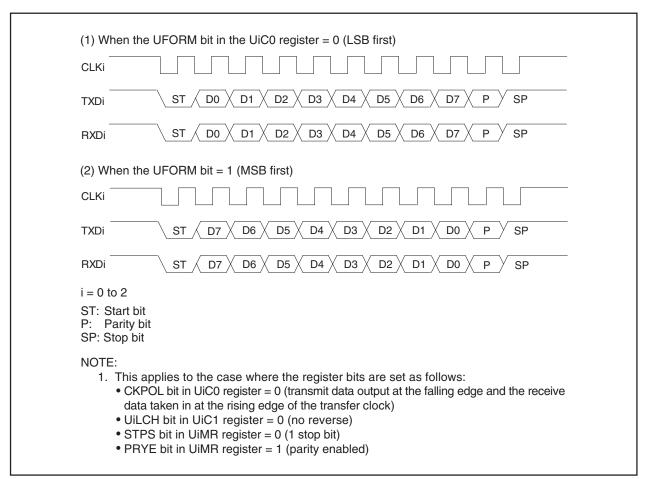


Figure 15.19 Transfer Format

15.1.2.4 Serial Data Logic Switching Function

The data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 15.20 shows serial data logic.

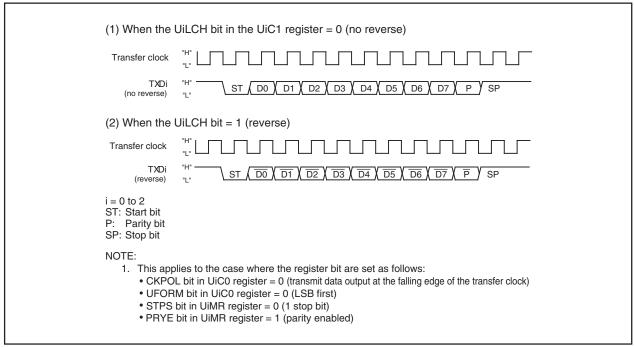


Figure 15.20 Serial Data Logic Switching

15.1.2.5 TXD and RXD I/O Polarity Inverse Function

This function inverses the polarities of the TXDi pin output and RXDi pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed. Figure 15.21 shows the TXD and RXD input/output polarity inverse.

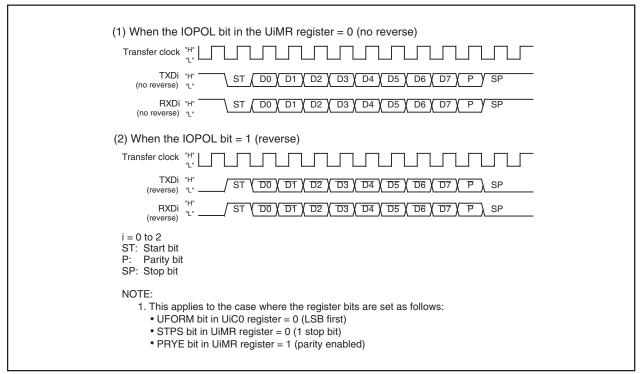


Figure 15.21 TXD and RXD I/O Polarity Inverse

15.1.2.6 CTS/RTS Function

When the CTS function is used transmit operation start when "L" is applied to the CTSi/RTSi (i = 0 to 2) pin. Transmit operation begins when the $\overline{\text{CTSi/RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit operation, the operation stops before the next data.

When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the microcomputer is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

- CRD bit in UiC0 register = 1 (disables UART0 CTS/RTS function) CTSi/RTSi pin is programmable I/O function
- CRD bit = 0, CRS bit in UiC0 register= 0 (CTS function is selected) CTSi/RTSi pin is CTS function
- CRD bit = 0, CRS bit = 1 (RTS function is selected)

CTSi/RTSi pin is RTS function

15.1.2.7 CTS/RTS Separate Function (UART0)

This function separates CTS0/RTS0, outputs RTS0 from the P6_0 pin, and accepts as input the CTS0 from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (enables UART0 CTS/RTS)
- CRS bit in U0C0 register = 1 (outputs UART0 RTS)
- CRD bit in U1C0 register = 0 (enables UART1 CTS/RTS)
- CRS bit in U1C0 register = 0 (inputs UART1 CTS)
- RCSP bit in UCON register = 1 (inputs CTS0 from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used. Figure 15.22 shows CTS/RTS separate function usage.

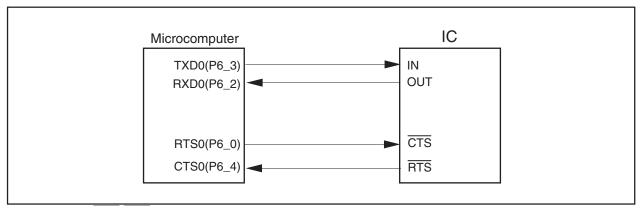


Figure 15.22 CTS/RTS Separate Function

15.1.3 Special Mode 1 (I²C Mode)

I²C mode is provided for use as a simplified I²C interface compatible mode. Table 15.10 lists the specifications of the I²C mode. Figure 15.23 shows the block diagram for I²C mode. Table 15.11 lists the registers used in the I²C mode and the register values set. Table 15.12 lists the functions in I²C mode. Figure 15.24 shows the transfer to the UiRB register and interrupt timing.

As shown in Table 15.12, the microcomputer is placed in I²C mode by setting the SMD2 to SMD0 bits to "010b" and the IICM bit to "1". Because SDAi transmit output has a delay circuit attached, SDAi output does not change state until SCLi goes low and remains stably low.

Table 15.10 I²C Mode Specifications

Item	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer Clock	During master
	The CKDIR bit in the UiMR register = 0 (internal clock) : fj/ 2(n+1)
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh
	During slave
	The CKDIR bit = 1 (external clock): Input from SCLi pin
Transmission Start Condition	Before transmission can start, the following requirements must be met (1)
	• The TE bit in the UiC1 register = 1 (transmission enabled)
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Reception Start Condition	Before reception can start, the following requirements must be met (1)
	• The RE bit in the UiC1 register = 1 (reception enabled)
	• The TE bit in the UiC1 register = 1 (transmission enabled)
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Interrupt Request	When start or stop condition is detected, acknowledge undetected, and acknowledge
Generation Timing	detected
Error Detection	Overrun error (2)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 8th bit of the next data
Select Function	Arbitration lost
	Timing at which the ABT bit in the UiRB register is updated can be selected
	SDAi digital delay
	No digital delay or a delay of 2 to 8 UiBRG count source clock cycles selectable
	Clock phase setting
	With or without clock delay selectable

i = 0 to 2

- 1. When an external clock is selected, the conditions must be met while the external clock is in the high state.
- 2. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.

This diagram applies to the case where the SMD2 to SMD0 bits in the UiMR register = 010b and the IICM bit in the UiSMR register = 1. i = 0 to 2

IICM: Bit in UiSMR register

IICM2, SWC, ALS, SWC2, SDHI: Bits in UiSMR2 register

STSPSEL, ACKD, ACKC: Bits in UiSMR4 register

NOTE

1. If the IICM bit =1, the pins can be read even when the PD6_2, PD6_6 or PD7_1 bit = 1 (output mode).

Figure 15.23 I²C Mode Block Diagram

Table 15.11 Registers to Be Used and Settings in I²C Mode

Register	Register Bit Function				
		Master	Slave		
UiTB (1)	0 to 7	Set transmission data			
UiRB (1)	0 to 7	Reception data can be read			
	8	ACK or NACK is set in this bit			
	ABT	Arbitration lost detection flag	Invalid		
	OER	Overrun error flag			
UiBRG	0 to 7	Set a transfer rate	Invalid		
UiMR (1)	SMD2 to SMD0	Set to "010b"			
	CKDIR	Set to "0"	Set to "1"		
	IOPOL	Set to "0"			
UiC0	CLK1, CLK0	Select the count source for the UiBRG register	Invalid		
	CRS	Invalid because the CRD bit = 1			
	TXEPT	Transmit register empty flag			
	CRD	Set to "1"			
	NCH	Set to "1"			
	CKPOL	Set to "0"			
	UFORM	Set to "1"			
UiC1	TE	Set this bit to "1" to enable transmission			
	TI	Transmit buffer empty flag			
	RE	Set this bit to "1" to enable reception			
	RI	Reception complete flag			
	U2IRS (2)	Invalid			
	U2RRM (2),	Set to "0"			
	UiLCH, UiERE				
UiSMR	IICM	Set to "1"			
	ABC	Select the timing at which arbitration-lost	Invalid		
ı		is detected			
	BBS	Bus busy flag			
	3 to 7	Set to "0"			
UiSMR2	IICM2	See Table 15.12 I ² C Mode Functions			
	CSC	Set this bit to "1" to enable clock synchronization	Set to "0"		
	SWC	Set this bit to "1" to have SCLi output fixed to "	L" at the falling edge of the 9th bit of clock		
	ALS	Set this bit to "1" to have SDAi output	Set to "0"		
		stopped when arbitration-lost is detected			
	STAC	Set to "0"	Set this bit to "1" to initialize UARTi at		
			start condition detection		
	SWC2	Set this bit to "1" to have SCLi output forci	bly pulled low		
	SDHI	Set this bit to "1" to disable SDAi output	•		
	7	Set to "0"			
UiSMR3	0, 2, 4 and NODC	Set to "0"			
	CKPH	See Table 15.12 I ² C Mode Functions			
	DL2 to DL0	Set the amount of SDAi digital delay			
UiSMR4	STAREQ	Set this bit to "1" to generate start condition	Set to "0"		
	RSTAREQ	Set this bit to "1" to generate restart condition	Set to "0"		
	STPREQ	Set this bit to "1" to generate stop condition	Set to "0"		
	STSPSEL	Set this bit to "1" to output each condition	Set to "0"		
	ACKD	Select ACK or NACK			
	ACKC	Set this bit to "1" to output ACK data			
	SCLHI	Set this bit to "1" to have SCLi output	Set to "0"		
		stopped when stop condition is detected			
	SWC9	Set to "0"	Set this bit to "1" to set the SCLi to "L" hold		
		1			
			at the falling edge of the 9th bit of clock		
IFSR0	IFSR06, ISFR07	Set to "1"	at the falling edge of the 9th bit of clock		
IFSR0 UCON	IFSR06, ISFR07 U0IRS, U1IRS	Set to "1"	at the falling edge of the 9th bit of clock		

i = 0 to 2

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in I^2C mode.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Table 15.12 I²C Mode Functions

	Clock	I ² C	Mode (SMD2 to S	MD0 = 010b, IICM	= 1)
Function	Synchronous Serial I/O Mode	IICM2 = 0 (NACK/ACK interrupt)		IICM2 = 1 (UART transmit/receive interrupt)	
	(SMD2 to SMD0 = 001b, IICM = 0)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Factor of Interrupt	-	Start condition de	tection or stop cor	ndition detection	
Number 6, 7 and 10 (1) (5) (7)		(See Table 15.13	STSPSEL Bit Fu	inctions)	
Factor of Interrupt	UARTi transmission	No acknowledgm	ent detection	UARTi transmission	UARTi transmission
Number 15, 17 and 19 (1) (6)	Transmission started or completed (selected by UiIRS)	(NACK) Rising edge of SC	CLi 9th bit	Rising edge of SCLi 9th bit	Falling edge of SCLi next to the 9th bit
Factor of Interrupt	UARTi reception	Acknowledgment	detection (ACK)	UARTi reception	
Number 16, 18 and 20 ^{(1) (6)}	When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of SC	CLi 9th bit	Falling edge of So	CLi 9th bit
Timing for Transferring	CKPOL = 0 (rising edge)	Rising edge of S0	CLi 9th bit	Falling edge of	Falling and rising
Data from UART	CKPOL = 1 (falling edge)			SCLi 9th bit	edges of SCLi 9th
Reception Shift Register					bit
to UiRB Register					
UARTi Transmission Output Delay	Not delayed	Delayed			
Functions of P6_3, P6_7 and P7_0 Pins	TXDi output	SDAi input/output	İ		
Functions of P6_2, P6_6 and P7_1 Pins	RXDi input	SCLi input/output			
Functions of P6_1,	CLKi input or	- (Cannot be used	d in I ² C mode)		
P6_5 and P7_2 Pins	output selected				
Noise Filter Width	15 ns	200 ns			
Read RXDi and SCLi Pins Levels	Possible when the corresponding port direction bit = 0	Always possible n	o matter how the c	corresponding port	direction bit is set
Initial Value of TXDi and SDAi Outputs	CKPOL = 0 (H) CKPOL = 1 (L)	The value set in t	he port register be	efore setting I ² C mo	ode ⁽²⁾
Initial and End	-	Н	L	Н	L
Value of SCLi					
DMA1 Factor (6)	UARTi reception	Acknowledgment	detection (ACK)	UARTi reception Falling edge of So	CLi 9th bit
Store Received	1st to 8th bits of t	the received data are stored into bit 1st to 7th bits of the received data are stored int		eived data are stored into	
Data	7 to bit 0 in the Ui	DiRB register bit 6 to bit 0 in the UiRB 1st to 8th bits a register, 8th bit is stored into bit 7 to		stored into bit 7 to bit	
				bit 8 in the UiRB register	0 in UiRB register (3)
Read Received	The UiRB registe	r status is read			Bit 6 to bit 0 in the UiRB
Data					register (4) are read as bit 7 to bit 1. Bit 8 in the UiRB
					register is read as bit 0.
= 0 to 2					- 3 10 . 0 a a a a b it 0.

i = 0 to 2NOTES:

If the source or cause of any interrupt is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). (Refer to 23.8 Interrupts.)
 If one of the bits shown below is changed, the interrupt source, the interrupt timing, etc. change. Therefore, always be sure to set the IR bit to "0" (interrupt not requested) after changing those bits.
 SMD2 to SMD0 bits in UiMR register
 IICM bit in UiSMR register
 IICM bit in UiSMR3 register
 Set the initial value of SDAi output while the SMD2 to SMD0 bits in the UiMR register = 000b (serial interface disabled).
 Second data transfer to the UiRB register (falling edge of SCLi 9th bit)
 First data transfer to the UiRB register (falling edge of SCLi 9th bit)
 See Figure 15.26 STSPSEL Bit Functions.

See Figure 15.26 STSPSEL Bit Functions.
See Figure 15.24 Transfer to UiRB Register and Interrupt Timing.
When using UART0, be sure to set the IFSR06 bit in the IFSR0 register to "1" (cause of interrupt: UART0 bus collision detection).
When using UART1, be sure to set the IFSR07 bit in the IFSR0 register to "1" (cause of interrupt: UART1 bus collision detection).

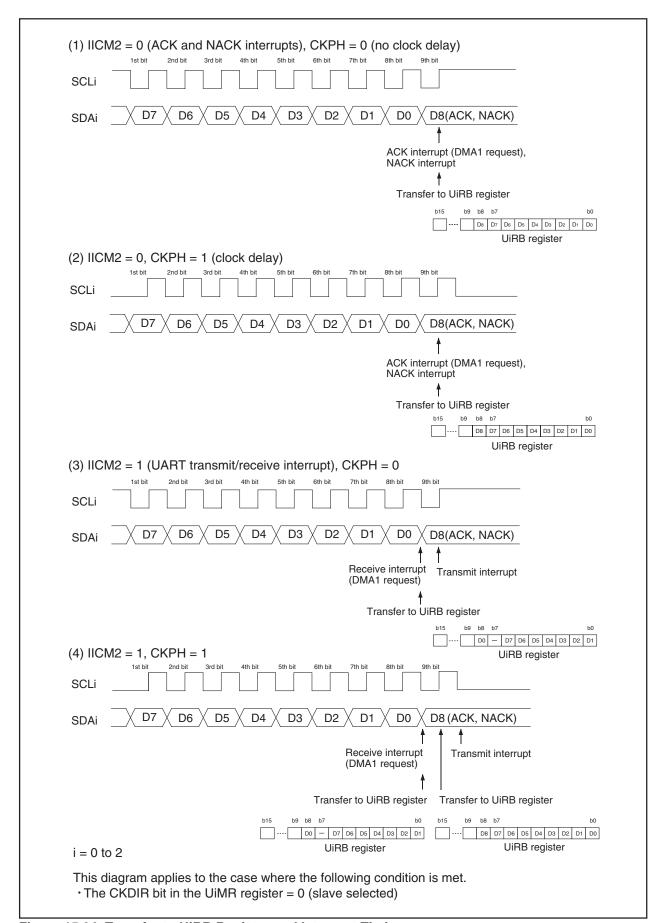


Figure 15.24 Transfer to UiRB Register and Interrupt Timing

15.1.3.1 Detection of Start and Stop Condition

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition-detected interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Figure 15.25 shows the detection of start and stop condition.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the BBS bit in the UiSMR register to determine which interrupt source is requesting the interrupt.

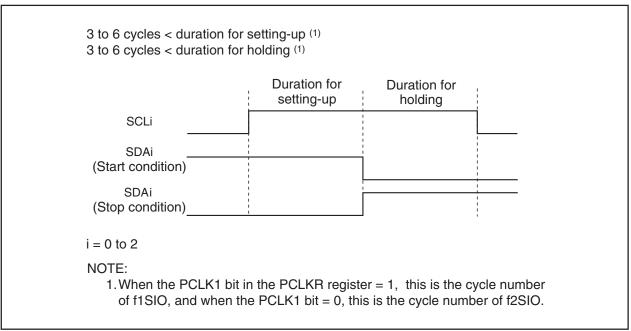


Figure 15.25 Detection of Start and Stop Condition

15.1.3.2 Output of Start and Stop Condition

A start condition is generated by setting the STAREQ bit in the UiSMR4 register (i = 0 to 2) to "1" (start).

A restart condition is generated by setting the RSTAREQ bit in the UiSMR4 register to "1" (start).

A stop condition is generated by setting the STPREQ bit in the UiSMR4 register to "1" (start).

The output procedure is described below.

- (1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to "1" (start).
- (2) Set the STSPSEL bit in the UiSMR4 register to "1" (output).

Table 15.13 and Figure 15.26 show the functions of the STSPSEL bit.

Table 15.13 STSPSEL Bit Functions

Function	STSPSEL Bit = 0	STSPSEL Bit = 1
Output of SCLi and SDAi Pins	Output of transfer clock and	Output of a start/stop condition
	data	according to the STAREQ,
	Output of start/stop condition is	RSTAREQ and STPREQ bits
	accomplished by a program	
	using ports (not automatically	
	generated in hardware)	
Start/Stop Condition Interrupt	Start/stop condition detection	Finish generating start/stop condition
Request Generation Timing		

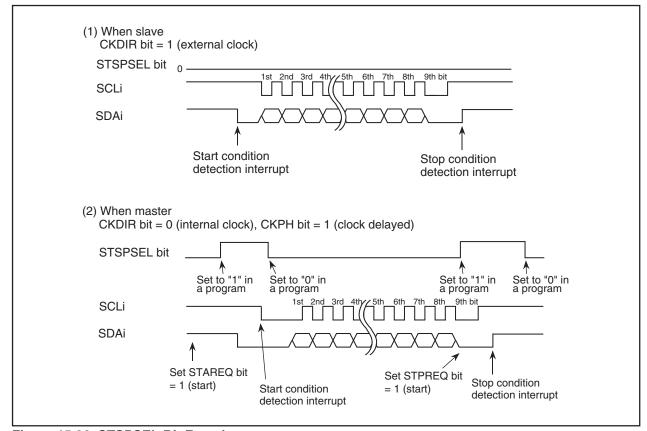


Figure 15.26 STSPSEL Bit Functions

15.1.3.3 Arbitration

Unmatching of the transmit data and SDAi pin input data is checked synchronously with the rising edge of SCLi. Use the ABC bit in the UiSMR register to select the timing at which the ABT bit in the UiRB register is updated. If the ABC bit = 0 (updated per bit), the ABT bit is set to "1" at the same time unmatching is detected during check, and is set to "0" when not detected. In cases when the ABC bit is set to "1", if unmatching is detected even once during check, the ABT bit is set to "1" (unmatching detected) at the falling edge of the clock pulse of 9th bit. If the ABT bit needs to be updated per byte, set the ABT bit to "0" (undetected) after detecting acknowledge in the first byte, before transferring the next byte.

Setting the ALS bit in the UiSMR2 register to "1" (SDA output stop enabled) causes arbitration-lost to occur, in which case the SDAi pin is placed in the high-impedance state at the same time the ABT bit is set to "1" (unmatching detected).

15.1.3.4 Transfer Clock

Data is transmitted/received using a transfer clock like the one shown in Figure 15.24.

The CSC bit in the UiSMR2 register is used to synchronize the internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. In cases when the CSC bit is set to "1" (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the value of the UiBRG register is reloaded with and starts counting in the low-level interval. If the internal SCLi changes state from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transfer clock is comprised of the logical product of the internal SCLi and SCLi pin signal. The transfer clock works from a half period before the falling edge of the internal SCLi 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock.

The SWC bit in the UiSMR2 register allows to select whether the SCLi pin should be fixed to or freed from low-level output at the falling edge of the 9th clock pulse.

If the SCLHI bit in the UiSMR4 register is set to "1" (enabled), SCLi output is turned off (placed in the high-impedance state) when a stop condition is detected.

Setting the SWC2 bit in the UiSMR2 register = 1 (0 output) makes it possible to forcibly output a low-level signal from the SCLi pin even while sending or receiving data. Setting the SWC2 bit to "0" (transfer clock) allows the transfer clock to be output from or supplied to the SCLi pin, instead of outputting a low-level signal.

If the SWC9 bit in the UiSMR4 register is set to "1" (SCL hold low enabled) when the CKPH bit in the UiSMR3 register = 1, the SCLi pin is fixed to low-level output at the falling edge of the clock pulse next to the ninth. Setting the SWC9 bit = 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

15.1.3.5 SDA Output

The data written to bit 7 to bit 0 (D7 to D0) in the UiTB register is sequentially output beginning with D7. The ninth bit (D8) is ACK or NACK.

The initial value of SDAi transmit output can only be set when IICM = 1 (I^2 C mode) and the SMD2 to SMD0 bits in the UiMR register = 000b (serial interface disabled).

The DL2 to DL0 bits in the UiSMR3 register allow to add no delays or a delay of 2 to 8 UiBRG count source clock cycles to SDAi output.

Setting the SDHI bit in the UiSMR2 register = 1 (SDA output disabled) forcibly places the SDAi pin in the high-impedance state. Do not write to the SDHI bit synchronously with the rising edge of the UARTi transfer clock. This is because the ABT bit may inadvertently be set to "1" (detected).

15.1.3.6 SDA Input

When the IICM2 bit = 0, the 1st to 8th bits (D7 to D0) of received data are stored in the bit 7 to bit 0 in the UiRB register. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit = 1, the 1st to 7th bits (D7 to D1) of received data are stored in the bit 6 to bit 0 in the UiRB register and the 8th bit (D0) is stored in the bit 8 in the UiRB register. Even when the IICM2 bit = 1, providing the CKPH bit = 1, the same data as when the IICM2 bit = 0 can be read out by reading the UiRB register after the rising edge of the corresponding clock pulse of 9th bit.

15.1.3.7 ACK and NACK

If the STSPSEL bit in the UiSMR4 register is set to "0" (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit = 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the 9th bit of transmit clock pulse.

If ACKi is selected for the cause of DMA1 request, a DMA transfer can be activated by detection of an acknowledge.

15.1.3.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit = 1 (UARTi initialization enabled), the serial I/O operates as described below.

- The transmit shift register is initialized, and the content of the UiTB register is transferred to the transmit shift register. In this way, the serial I/O starts sending data synchronously with the next clock pulse applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output synchronously with the input clock.
- The receive shift register is initialized, and the serial I/O starts receiving data synchronously with the next clock pulse applied.
- The SWC bit is set to "1" (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the ninth clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI bit does not change state. Note also that when using this function, the selected transfer clock should be an external clock.

15.1.4 Special Mode 2

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. Table 15.14 lists the specifications of Special Mode 2. Figure 15.27 shows communication control example for Special Mode 2. Table 15.15 lists the registers used in Special Mode 2 and the register values set.

Table 15.14 Special Mode 2 Specifications

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	Master mode
	The CKDIR bit in the UiMR register = 0 (internal clock) : fj/ 2(n+1)
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh
	Slave mode
	The CKDIR bit = 1 (external clock selected) : Input from CLKi pin
Transmit/receive control	Controlled by input/output ports
Transmission start condition	Before transmission can start, the following requirements must be met (1)
	• The TE bit in the UiC1 register = 1 (transmission enabled)
	The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Reception start condition	Before reception can start, the following requirements must be met (1)
	The RE bit in the UiC1 register = 1 (reception enabled)
	The TE bit in the UiC1 register = 1 (transmission enabled)
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Interrupt Request	For transmission, one of the following conditions can be selected
Generation Timing	• The UiIRS bit (2) = 0 (transmit buffer empty): when transferring data from the UiTB
	register to the UARTi transmit register (at start of transmission)
	• The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error (3)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select function	Clock phase setting
	Selectable from four combinations of transfer clock polarities and phases

i = 0 to 2

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiCO register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
- 2. The U0IRS and U1IRS bits respectively are bits 0 and 1 in the UCON register; the U2IRS bit is bit 4 in the U2C1 register.
- 3. If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in SiRIC register does not change.

Figure 15.27 Serial Bus Communication Control Example (UART2)

Table 15.15 Registers to Be Used and Settings in Special Mode 2

Register	Bit	Function
UiTB (1)	0 to 7	Set transmission data
UiRB (1)	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR (1)	SMD2 to SMD0	Set to "001b"
	CKDIR	Set this bit to "0" for master mode or "1" for slave mode
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because the CRD bit = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TXDi pin output format
	CKPOL	Clock phases can be set in combination with the CKPH bit in the UiSMR3 register
	UFORM	Set to "0"
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (2)	Select UART2 transmit interrupt cause
	U2RRM ⁽²⁾ ,	Set to "0"
	UiLCH, UiERE	
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	СКРН	Clock phases can be set in combination with the CKPOL bit in the UiC0 register
	NODC	Set to "0"
	0, 2, 4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select UART0 and UART1 transmit interrupt cause
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because the CLKMD1 bit = 0
	CLKMD1, RCSP, 7	Set to "0"
i = 0 to 2		

i = 0 to 2

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in Special Mode 2.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

15.1.4.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the CKPH bit in the UiSMR3 register and the CKPOL bit in the UiC0 register.

Make sure the transfer clock polarity and phase are the same for the master and salves to be communicated.

Figure 15.28 shows the transmission and reception timing in master (internal clock).

Figure 15.29 shows the transmission and reception timing (CKPH = 0) in slave (external clock).

Figure 15.30 shows the transmission and reception timing (CKPH = 1) in slave (external clock).

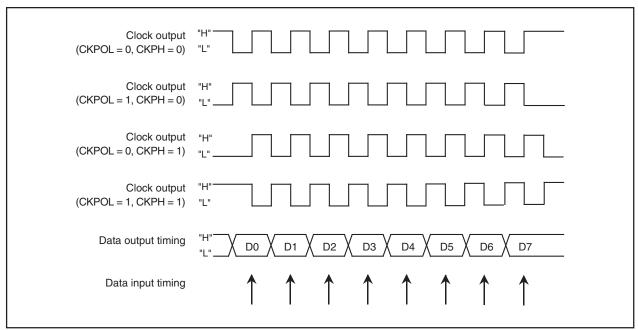


Figure 15.28 Transmission and Reception Timing in Master Mode (Internal Clock)

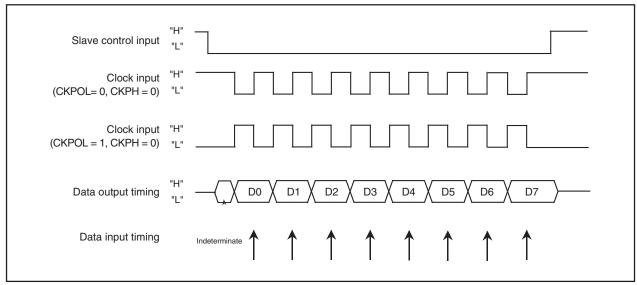


Figure 15.29 Transmission and Reception Timing (CKPH = 0) in Slave Mode (External Clock)

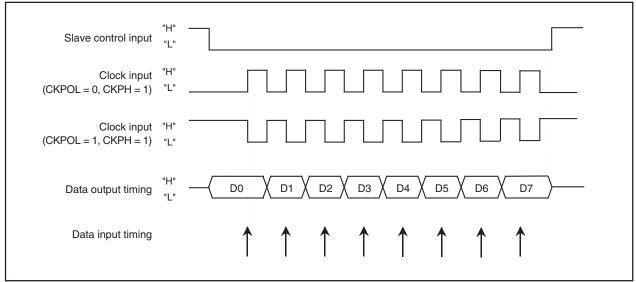


Figure 15.30 Transmission and Reception Timing (CKPH = 1) in Slave Mode (External Clock)

15.1.5 Special Mode 3 (IE Mode)

In this mode, one bit of IEBus is approximated with one byte of UART mode waveform.

Table 15.16 lists the registers used in IE mode and the register values set. Figure 15.31 shows the functions of bus collision detect function related bits.

If the TXDi pin (i = 0 to 2) output level and RXDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use the IFSR06 and IFSR07 bits in the IFSR0 register to enable the UART0/UART1 bus collision detect function.

Table 15.16 Registers to Be Used and Settings in IE Mode

Register	Bit	Function
UiTB	0 to 8	Set transmission data
UiRB (1)	0 to 8	Reception data can be read
	OER,FER,PER,SUM	Error flag
UiBRG	0 to 7	Set a transfer rate
UiMR	SMD2 to SMD0	Set to "110b"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Invalid because the PRYE bit = 0
	PRYE	Set to "0"
	IOPOL	Select the TXD/RXD input/output polarity
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because the CRD bit = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TXDi pin output mode
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (2)	Select the source of UART2 transmit interrupt
	U2RRM (2),	Set to "0"
	UiLCH, UiERE	
UiSMR	0 to 3, 7	Set to "0"
	ABSCS	Select the sampling timing at which to detect a bus collision
	ACSE	Set this bit to "1" to use the auto clear function of transmit enable bit
	SSS	Select the transmit start condition
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
IFSR0	IFSR06, IFSR07	Set to "1"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because the CLKMD1 bit = 0
	CLKMD1, RCSP, 7	Set to "0"
i= 0 to 2		

i=0 to 2

- 1. Not all register bits are described above. Set those bits to "0" when writing to the registers in IE mode.
- 2. Set the bit 4 and bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

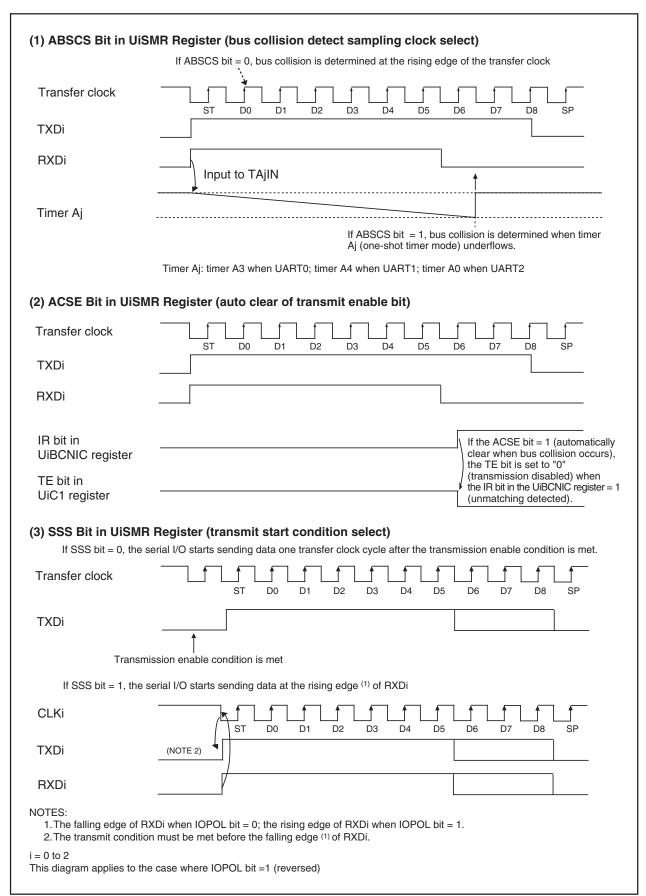


Figure 15.31 Bus Collision Detect Function-Related Bits

15.1.6 Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows to output a low from the TXD2 pin when a parity error is detected. Table 15.17 lists the specifications of SIM mode. Table 15.18 lists the registers used in the SIM mode and the register values set. Figure 15.32 shows the typical transmit/receive timing in SIM mode.

Table 15.17 SIM Mode Specifications

Item	Specification		
Transfer data format	Direct format		
	Inverse format		
Transfer clock	• The CKDIR bit in the U2MR register = 0 (internal clock) : fi/ 16(n+1)		
	fi = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the U2BRG register 00h to FFh		
	The CKDIR bit = 1 (external clock) : fEXT/16(n+1)		
	fEXT: Input from CLK2 pin. n: Setting value of the U2BRG register 00h to FFh		
Transmission start condition	Before transmission can start, the following requirements must be met		
	The TE bit in the U2C1 register = 1 (transmission enabled)		
	• The TI bit in the U2C1 register = 0 (data present in the U2TB register)		
Reception start condition	Before reception can start, the following requirements must be met		
	• The RE bit in the U2C1 register = 1 (reception enabled)		
	Start bit detection		
Interrupt request	For transmission		
generation timing (2)	When the serial I/O finished sending data from the U2TB transfer register (U2IRS bit = 1)		
	For reception		
	When transferring data from the UART2 receive register to the U2RB register (at		
	completion of reception)		
Error detection	Overrun error (1)		
	This error occurs if the serial I/O started receiving the next data before reading the		
	U2RB register and received the bit one before the last stop bit of the next data		
	• Framing error (3)		
	This error occurs when the number of stop bits set is not detected		
	Parity error (3)		
	During reception, if a parity error is detected, parity error signal is output from the		
	TXD2 pin.		
	During transmission, a parity error is detected by the level of input to the RXD2 pin		
	when a transmission interrupt occurs		
	Error sum flag		
	This flag is set to "1" when any of the overrun, framing, and parity errors is encountered		

- 1. If an overrun error occurs, the value of the U2RB register will be indeterminate. The IR bit in the S2RIC register does not change.
- 2. A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to "1" (transmit is completed) and U2ERE bit to "1" (error signal output) after reset. Therefore, when using SIM mode, set the IR bit to "0" (interrupt not requested) after setting these bits.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Register	Bit	Function
U2TB (1)	0 to 7	Set transmission data
U2RB (1)	0 to 7	Reception data can be read
	OER,FER,PER,SUM	Error flag
U2BRG	0 to 7	Set a transfer rate
U2MR	SMD2 to SMD0	Set to "101b"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Set this bit to "1" for direct format or "0" for inverse format
	PRYE	Set to "1"
	IOPOL	Set to "0"
U2C0	CLK1, CLK0	Select the count source for the U2BRG register
	CRS	Invalid because the CRD bit = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Set to "0"
	CKPOL	Set to "0"
	UFORM	Set this bit to "0" for direct format or "1" for inverse format
U2C1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS	Set to "1"
	U2RRM	Set to "0"
	U2LCH	Set this bit to "0" for direct format or "1" for inverse format
	U2ERE	Set to "1"
U2SMR (1)	0 to 3	Set to "0"
U2SMR2	0 to 7	Set to "0"
U2SMR3	0 to 7	Set to "0"
U2SMR4	0 to 7	Set to "0"

NOTE:

1. Not all register bits are described above. Set those bits to "0" when writing to the registers in SIM mode.

This document is under development and its contents are subject to change.

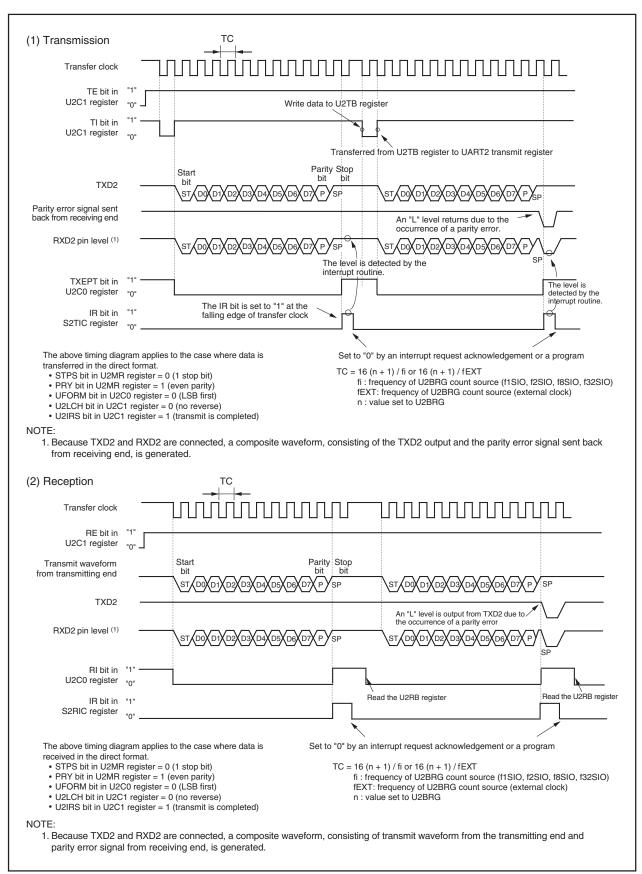


Figure 15.32 Transmit and Receive Timing in SIM Mode

Figure 15.33 shows the example of connecting the SIM interface. Connect TXD2 and RXD2 and apply pull-up.

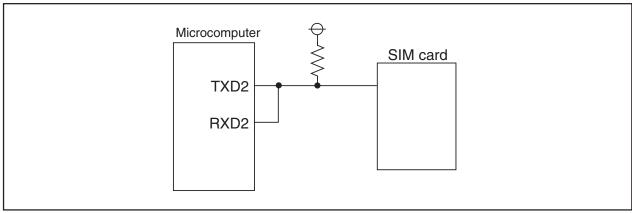


Figure 15.33 SIM Interface Connection

15.1.6.1 Parity Error Signal Output

The parity error signal is enabled by setting the U2ERE bit in the U2C1 register to "1".

The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TXD2 output low with the timing shown in Figure 15.32. If the R2RB register is read while outputting a parity error signal, the PER bit is set to "0" and at the same time the TXD2 output is returned high.

When transmitting, a transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the RXD2 pin in a transmission-finished interrupt service routine.

Figure 15.34 shows the output timing of the parity error signal

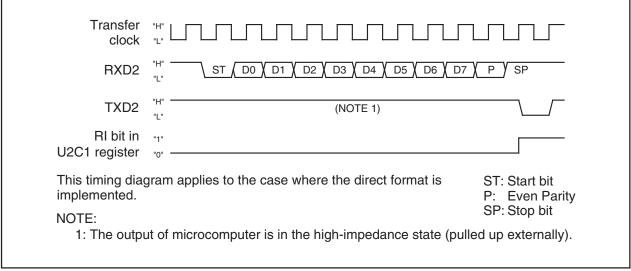


Figure 15.34 Parity Error Signal Output Timing

15.1.6.2 Format

When direct format, set the PRY bit in the U2MR register to "1", the UFORM bit in the U2C0 register to "0" and the U2LCH bit in the U2C1 register to "0".

When inverse format, set the PRY bit to "0", UFORM bit to "1" and U2LCH bit to "1".

Figure 15.35 shows the SIM interface format.

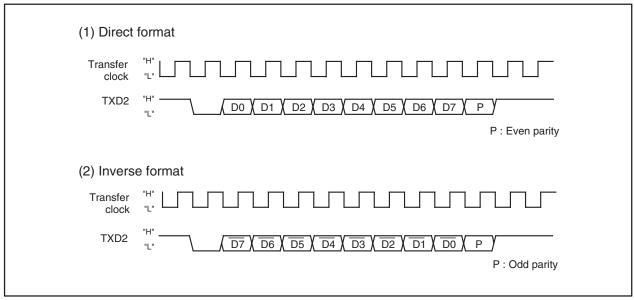


Figure 15.35 SIM Interface Format

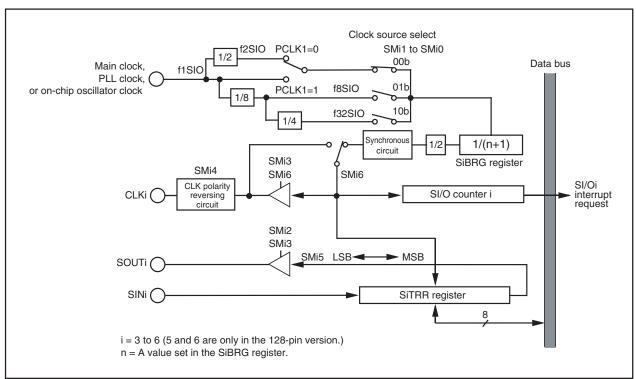
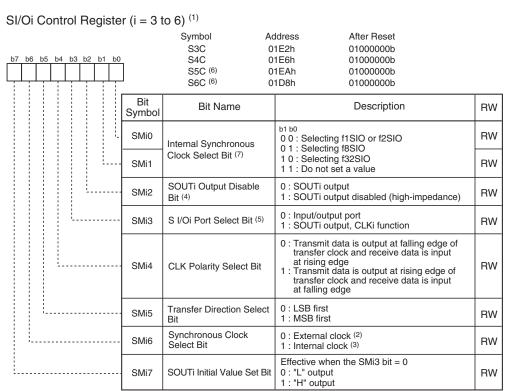
15.2 SI/Oi (i = 3 to 6) (1)

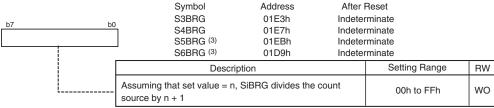
SI/Oi is exclusive clock-synchronous serial I/Os.

Figure 15.36 shows the block diagram of SI/Oi, and Figures 15.37 and 15.38 show the SI/Oi-related registers. Table 15.19 lists the specifications of SI/Oi.

NOTE:

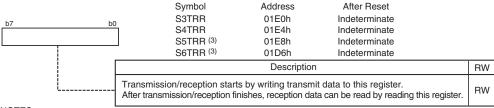
1.100-pin version supports SI/O3 and SI/O4.
 128-pin version supports SI/O3, SI/O4, SI/O5 and SI/O6.

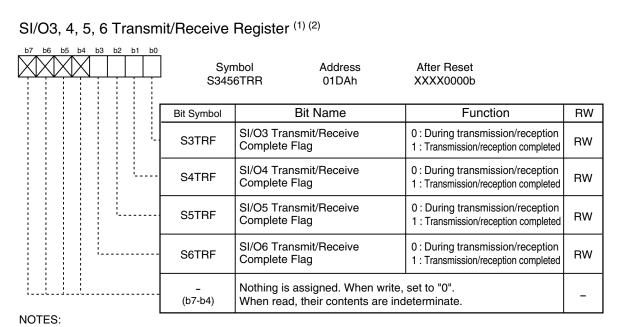

Figure 15.36 SI/Oi Block Diagram

NOTES:

- 1. Make sure this register is written to by the next instruction after setting the PRC2 bit in the PRCR register to "1" (write enabled)
- 2. Set the SMi3 bit to "1" (SOUTi output, CLKi function) and the corresponding port direction bit to "0" (input mode).
- 3. Set the SMi3 bit to "1" (SOUTi output, CLKi function).
- 4. When the SM32, SM52 or SM62 bit = 1, the corresponding pin is placed in the high-impedance state regardless of which functions of those pins are being used. SI/O4 is effective only when the SM43 bit = 1 (SOUT4 output, CLK4 function).
- 5. When using SI/O4, set the SM43 bit to "1" (SOUT4 output, CLK4 function) and the corresponding port direction bit for SOUT4 pin to "0" (input mode).
- 6. The S5C and S6C registers are only in the 128-pin version. When using the S5C and S6C registers, set these registers after setting the PU37 bit in the PUR3 register to "1" (Pins P11 to P14 are usable).
- 7. When changing the SMi1 to SMi0 bits, set the SiBRG register.


SI/Oi Bit Rate Generator (i = 3 to 6) $^{(1)}(2)(4)$

NOTES:


- 1. Write to this register while serial I/O is neither transmitting nor receiving.
- 2. Use the MOV instruction to write to this register.
- 3. The S5BRG and S6BRG registers are only in the 128-pin version.
- 4. Write to this register after setting the SMi1 to SMi0 bits in the SiC register.

SI/Oi Transmit/Receive Register (i = 3 to 6) (1) (2)

- 1. Write to this register while serial I/O is neither transmitting nor receiving.
- 2. To receive data, set the corresponding port direction bit for SINi to "0" (input mode).
- 3. The S5TRR and S6TRR registers are only in the 128-pin version.

Figure 15.37 S3C to S6C Registers, S3BRG to S6BRG Registers, and S3TRR to S6TRR Registers

- 1. The S3TRF to S6TRF bits can only be reset by writing to "0". (The S5TRF and S6TRF bits are only in the 128-pin version.)
- 2. When setting the S3TRF to S6TRF bits to "0", use the MOV instruction to write to the these bits after setting to "0" the bit set to "0" and setting other bits to "1".

Figure 15.38 S3456TRR Register

Table 15.19 SI/Oi Specifications

Item	Specification
Transfer Data Format	Transfer data length: 8 bits
Transfer clock	• SMi6 bit in SiC register = 1 (internal clock) : fj/2(n+1)
	fj = f1SIO, f8SIO, f32SIO. n = Setting value of SiBRG register 00h to FFh
	• SMi6 bit = 0 (external clock) : Input from CLKi pin (1)
Transmission/Reception	Before transmission/reception can start, the following requirements must be met
Start Condition	Write transmit data to the SiTRR register (2) (3)
Interrupt Request	• When SMi4 bit in SiC register = 0
Generation Timing	The rising edge of the last transfer clock pulse (4)
	• When SMi4 bit = 1
	The falling edge of the last transfer clock pulse (4)
CLKi Pin Function	I/O port, transfer clock input, transfer clock output
SOUTi Pin Function	I/O port, transmit data output, high-impedance
SINi Pin Function	I/O port, receive data input
Select Function	LSB first or MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning
	with bit 7 can be selected
	Function for setting an SOUTi initial value set function
	When the SMi6 bit in the SiC register = 0 (external clock), the SOUTi pin
	output level while not transmitting can be selected.
	CLK polarity selection
	Whether transmit data is output/input timing at the rising edge or falling
	edge of transfer clock can be selected.

i = 3 to 6 (5 and 6 are only in the 128-pin version.)

- 1. To set the SMi6 bit in the SiC register to "0" (external clock), follow the procedure described below.
 - If the SMi4 bit in the SiC register = 0, write transmit data to the SiTRR register while input on the CLKi pin is high. The same applies when rewriting the SMi7 bit in the SiC register.
 - If the SMi4 bit = 1, write transmit data to the SiTRR register while input on the CLKi pin is low. The same applies when rewriting the SMi7 bit.
 - Because shift operation continues as long as the transfer clock is supplied to the SI/Oi circuit, stop
 the transfer clock after supplying eight pulses. If the SMi6 bit = 1 (internal clock), the transfer clock
 automatically stops.
- 2. Unlike UART0 to UART2, SI/Oi is not separated between the transfer register and buffer. Therefore, do not write the next transmit data to the SiTRR register during transmission.
- 3. When the SMi6 bit = 1 (internal clock), SOUTi retains the last data for a 1/2 transfer clock period after completion of transfer and, thereafter, goes to a high-impedance state. However, if transmit data is written to the SiTRR register during this period, SOUTi immediately goes to a high-impedance state, with the data hold time thereby reduced.
- 4. When the SMi6 bit = 1 (internal clock), the transfer clock stops in the high state if the SMi4 bit = 0, or stops in the low state if the SMi4 bit = 1.

15.2.1 SI/Oi Operation Timing

Figure 15.39 shows the SI/Oi operation timing.

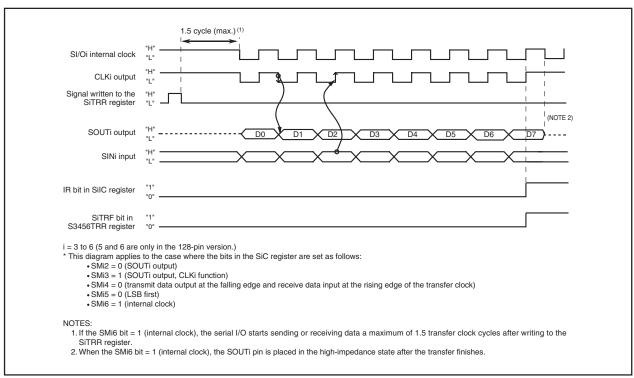


Figure 15.39 SI/Oi Operation Timing

15.2.2 CLK Polarity Selection

The SMi4 bit in the SiC register allows selection of the polarity of the transfer clock.

Figure 15.40 shows the polarity of the transfer clock.

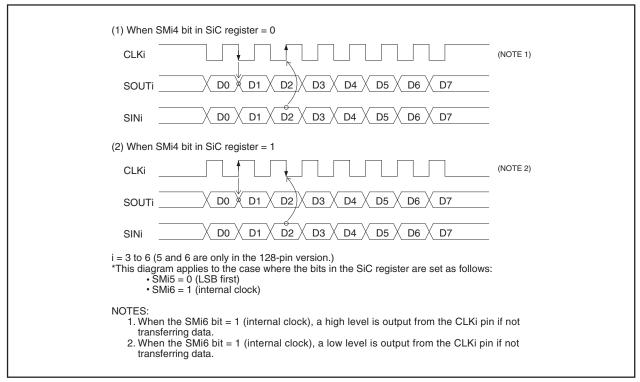


Figure 15.40 Polarity of Transfer Clock

15.2.3 Functions for Setting an SOUTi Initial Value

If the SMi6 bit in the SiC register = 0 (external clock), the SOUTi pin output can be fixed high or low when not transferring ⁽¹⁾.

Figure 15.41 shows the timing chart for setting an SOUTi initial value and how to set it.

NOTE:

1. When CAN0 function is selected, P7_4, P7_5 and P8_0 can be used as input/output pins for SI/O4. When CAN0 function is not selected, P9_5, P9_6 and P9_7 can be used as input/output pis for SI/O4.

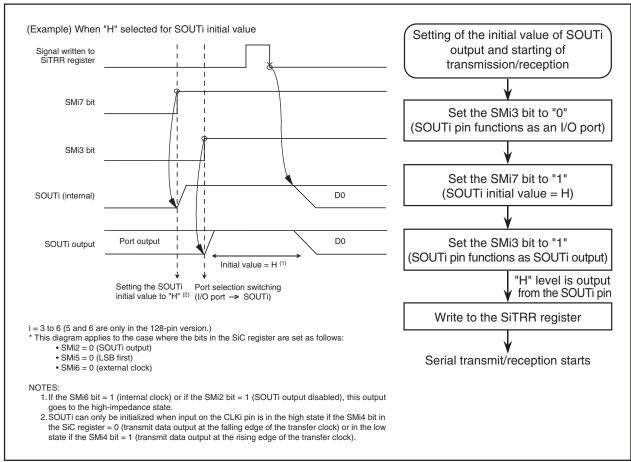


Figure 15.41 SOUTi's Initial Value Setting

16. A/D Converter

The microcomputer contains one A/D converter circuit based on 10-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P10_0 to P10_7, P9_5, P9_6, P0_0 to P0_7, and P2_0 to P2_7. Similarly, ADTRG input shares the pin with P9_7. Therefore, when using these inputs, make sure the corresponding port direction bits are set to "0" (input mode). When not using the A/D converter, set the VCUT bit to "0" (VREF unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip. The A/D conversion result is stored in the ADi register's bits for ANi, AN0_i, and AN2_i pins (i = 0 to 7). Table 16.1 shows the performance of the A/D converter. Figure 16.1 shows the block diagram of the A/D

converter, and Figures 16.2 and 16.3 show the A/D converter-related registers.

Table 16.1 A/D Converter Performance

Item	Performance
Method of A/D Conversion	
Analog Input Voltage (1)	0V to AVCC (VCC)
Operating Clock ϕ AD (2)	fAD, divide-by-2 of fAD, divide-by-3 of fAD, divide-by-4 of fAD,
	divide-by-6 of fAD, divide-by-12 of fAD
Resolution	8 bits or 10 bits (selectable)
Integral Nonlinearity Error	When AVCC = VREF = 5 V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution
	AN0 to AN7 input, AN0_0 to AN0_7 input and AN2_0 to AN2_7 input: ±3LSB
	ANEX0 and ANEX1 input (including mode in which external operation
	amp is selected): ±7LSB
	When AVCC = VREF = 3.3 V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution
	AN0 to AN7 input, AN0_0 to AN0_7 input and AN2_0 to AN2_7 input: ±5LSB
	ANEX0 and ANEX1 input (including mode in which external operation
	amp is selected): ±7LSB
Operating Modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	and repeat sweep mode 1
Analog Input Pins	8 pins (AN0 to AN7) + 2 pins (ANEX0 and ANEX1) + 8 pins (AN0_0 to AN0_7)
	+ 8 pins (AN2_0 to AN2_7)
A/D Conversion	Software trigger
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)
	• External trigger (retriggerable)
	Input on the ADTRG pin changes state from high to low after the ADST bit
	is set to "1" (A/D conversion starts)
Conversion Speed Per Pin	•
	8-bit resolution: 49 φAD cycles, 10-bit resolution: 59 φAD cycles
	With sample and hold
	8-bit resolution: 28 φAD cycles, 10-bit resolution: 33 φAD cycles

NOTES:

- 1. Does not depend on use of sample and hold.
- 2. \$\phiAD frequency must be 10 MHz or less.

When sample and hold is disabled, ϕAD frequency must be 250 kHz or more.

When sample and hold is enabled, ϕAD frequency must be 1 MHz or more.

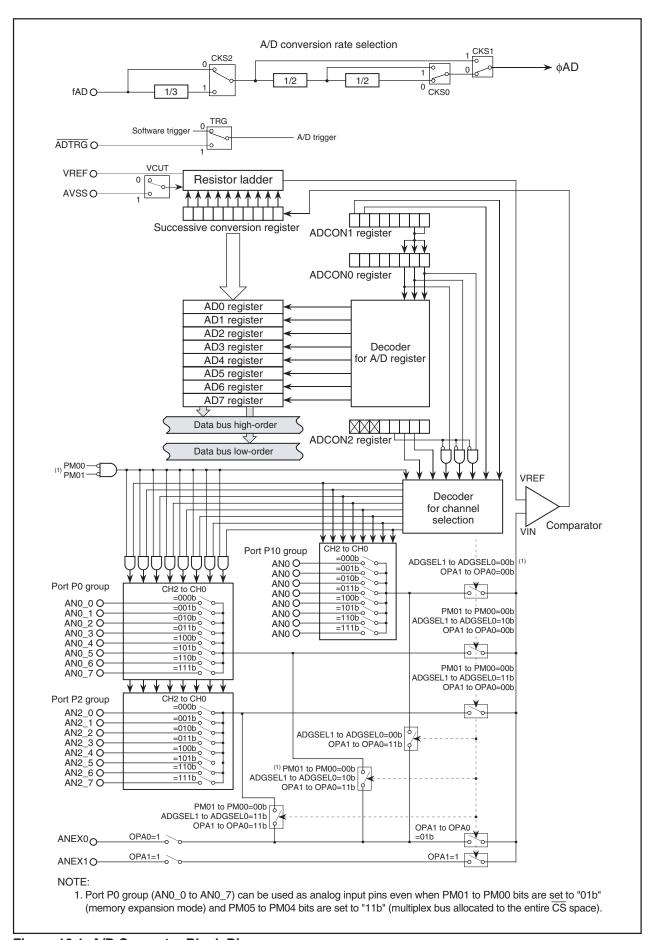
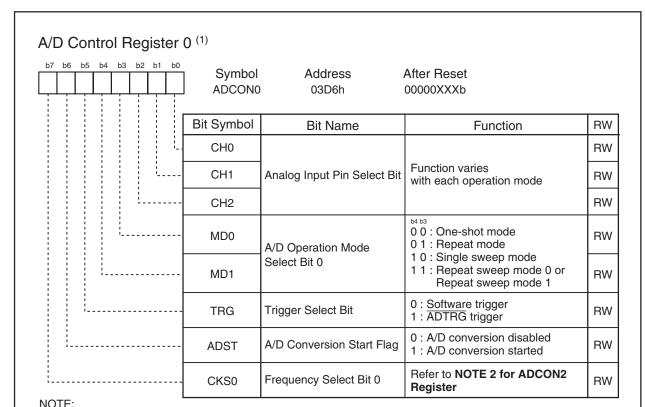
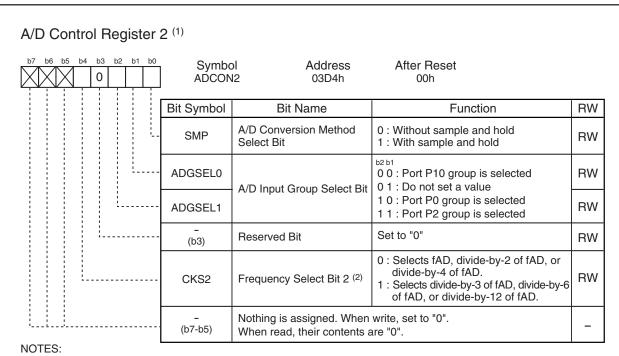



Figure 16.1 A/D Converter Block Diagram


1. If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.

A/D Control Register 1 (1)

b7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCON1		After Reset 00h	
	Bit symbol	Bit name	Function	RW
	SCAN0	A/D Sweep Pin Select Bit	Function varies with each operation mode	RW
	SCAN1			RW
	MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1	RW
	BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
	CKS1	Frequency Select Bit 1	Refer to NOTE 2 for ADCON2 Register	RW
L	VCUT	VREF Connect Bit (2)	0 : VREF not connected 1 : VREF connected	RW
	OPA0	External Op-Amp	Function varies	RW
	OPA1	Connection Mode Bit	with each operation mode	RW

- 1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μ s or more before starting A/D conversion.

Figure 16.2 ADCON0 Register and ADCON1 Register

- 1. If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. The φAD frequency must be 10 MHz or less. The selected φAD frequency is determined by a combination of the CKS0 bit in the ADCON0 register, the CKS1 bit in the ADCON1 register, and the CKS2 bit in the ADCON2 register.

CKS2	CKS1	CKS0	φAD	
0	0	0	Divide-by-4 of fAD	
0	0	1	Divide-by-2 of fAD	
0	1	0 fAD		
0	1	1	1	
1	0	0	Divide-by-12 of fAD	
1	0	1	Divide-by-6 of fAD	
1	1	0	Divide-by-3 of fAD	
1	1	1		

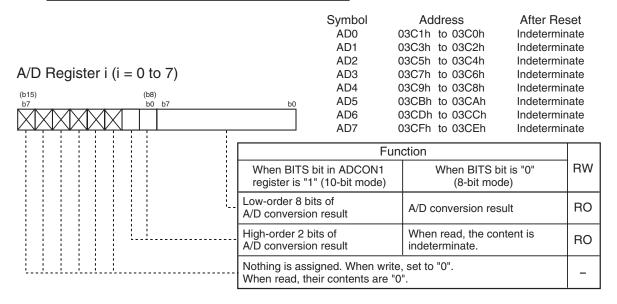
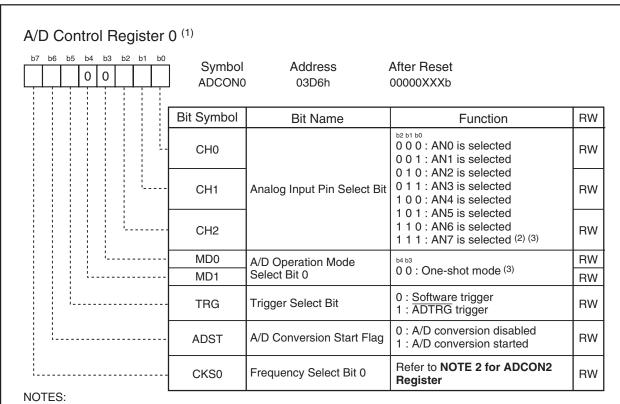
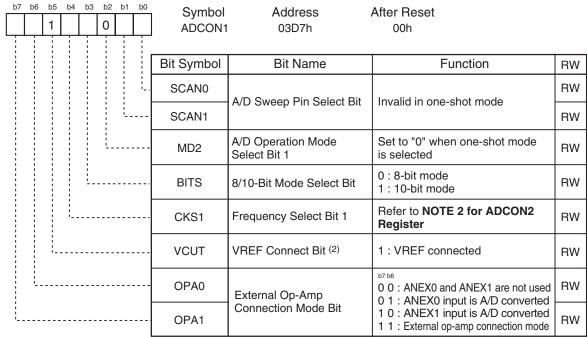


Figure 16.3 ADCON2 Register, and AD0 to AD7 Registers


16.1.1 One-shot Mode In one-shot mode, analog voltage applied to a selected pin is A/D converted once. Table 1

In one-shot mode, analog voltage applied to a selected pin is A/D converted once. Table 16.2 lists the specifications of one-shot mode. Figure 16.4 shows the ADCON0 and ADCON1 registers in one-shot mode.

Table 16.2 One-shot Mode Specifications

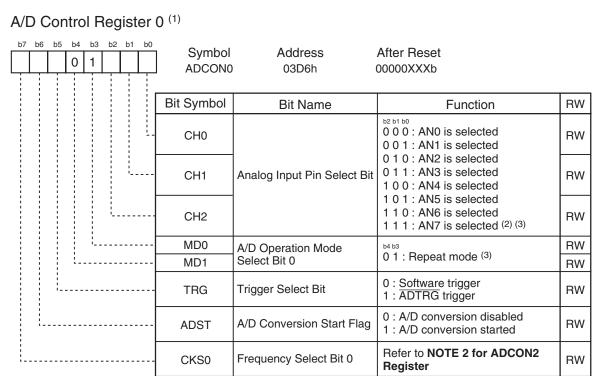

Item	Specification				
Function	The CH2 to CH0 bits in the ADCON0 register, the ADGSEL1 to ADGS				
	bits in the ADCON2 register and the OPA1 to OPA0 bits in the ADCON1				
	register select a pin Analog voltage applied to the pin is converted to a				
	digital code once.				
A/D Conversion	When the TRG bit in the ADCON0 register is "0" (software trigger)				
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)				
	When the TRG bit is "1" (ADTRG trigger)				
	Input on the ADTRG pin changes state from high to low after the ADST				
	bit is set to "1" (A/D conversion starts)				
A/D Conversion	Completion of A/D conversion (If a software trigger is selected, the ADST)				
Stop Condition	bit is set to "0" (A/D conversion halted).)				
	• Set the ADST bit to "0"				
Interrupt Request	Completion of A/D conversion				
Generation Timing					
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7,				
	ANEX0 to ANEX1				
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin				
A/D Converter					

- 1. If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. AN0_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.
- 3. After rewriting the MD1 to MD0 bits, set the CH2 to CH0 bits over again using another instruction.

A/D Control Register 1 (1)

- 1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

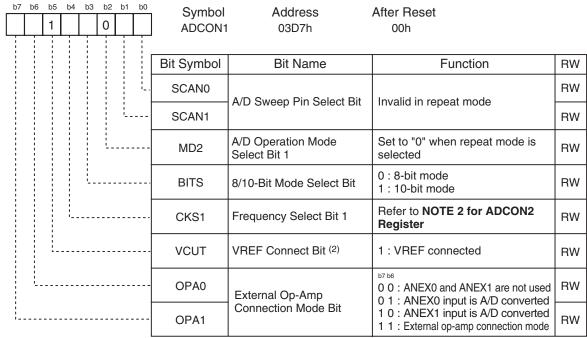
Figure 16.4 ADCON0 Register and ADCON1 Register in One-shot Mode


16.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 16.3 lists the specifications of repeat mode. Figure 16.5 shows the ADCON0 and ADCON1 registers in repeat mode.

Table 16.3 Repeat Mode Specifications

Item	Specification			
Function	The CH2 to CH0 bits in the ADCON0 register, the ADGSEL1 to ADGSEL0			
	bits in the ADCON2 register and the OPA1 to OPA0 bits in the ADCON1			
	register select a pin. Analog voltage applied to this pin is repeatedly			
	converted to a digital code.			
A/D Conversion	When the TRG bit in the ADCON0 register is "0" (software trigger)			
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)			
	When the TRG bit is "1" (ADTRG trigger)			
	Input on the ADTRG pin changes state from high to low after the ADST			
	bit is set to "1" (A/D conversion starts)			
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)			
Stop Condition				
Interrupt Request	None generated			
Generation Timing				
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7,			
	ANEX0 to ANEX1			
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin			
A/D Converter				



NOTES

- 1. If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. AN0_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.
- 3. After rewriting the MD1 to MD0 bits, set the CH2 to CH0 bits over again using another instruction.

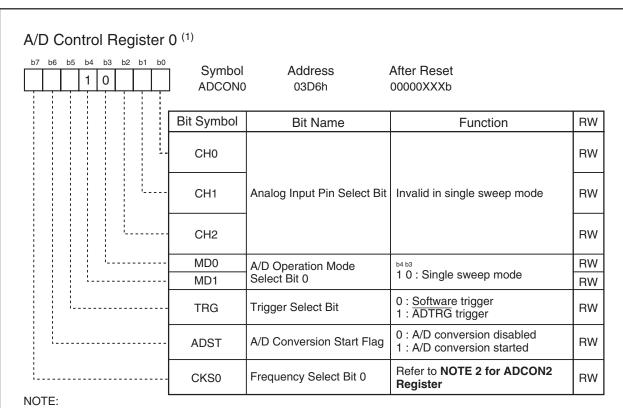
A/D Control Register 1 (1)

- 1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μ s or more before starting A/D conversion.

Figure 16.5 ADCON0 Register and ADCON1 Register in Repeat Mode

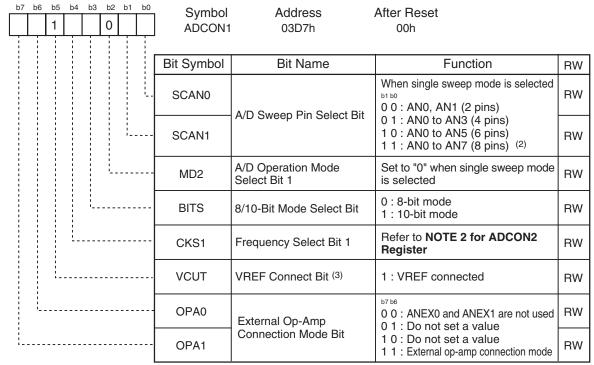
16.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 16.4 lists the specifications of single sweep mode. Figure 16.6 shows the ADCON0 and ADCON1 registers in single sweep mode.


Table 16.4 Single Sweep Mode Specifications

Item	Specification				
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to				
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage appli				
	to this pins is converted one-by-one to a digital code.				
A/D Conversion	When the TRG bit in the ADCON0 register is "0" (software trigger)				
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)				
	When the TRG bit is "1" (ADTRG trigger)				
	Input on the ADTRG pin changes state from high to low after the ADST				
	bit is set to "1" (A/D conversion starts)				
A/D Conversion	Completion of A/D conversion (If a software trigger is selected, the ADST)				
Stop Condition	bit is set to "0" (A/D conversion halted).)				
	Set the ADST bit to "0"				
Interrupt Request	Completion of A/D conversion				
Generation Timing					
Analog Input Pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins),				
	AN0 to AN7 (8 pins) (1)				
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin				
A/D Converter					

NOTE:


1. ANO_0 to ANO_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

^{1.} If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.

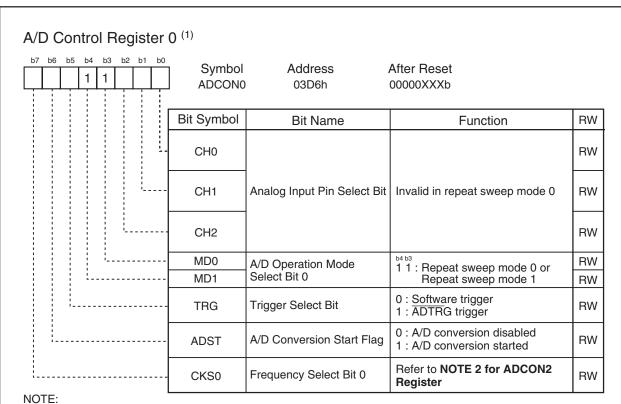
A/D Control Register 1 (1)

- 1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. ANO 0 to AN 7, and AN2 0 to AN2 7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.
- 3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before starting A/D conversion.

Figure 16.6 ADCON0 Register and ADCON1 Register in Single Sweep Mode

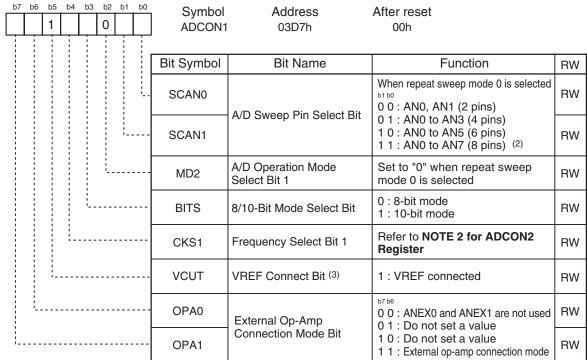
16.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 16.5 lists the specifications of repeat sweep mode 0. Figure 16.7 shows the ADCON0 and ADCON1 registers in repeat sweep mode 0.


Table 16.5 Repeat Sweep Mode 0 Specifications

Item	Specification				
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to				
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied				
	to the pins is repeatedly converted to a digital code.				
A/D Conversion	When the TRG bit in the ADCON0 register is "0" (software trigger)				
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion starts)				
	When the TRG bit is "1" (ADTRG trigger)				
	Input on the ADTRG pin changes state from high to low after the ADST				
	bit is set to "1" (A/D conversion starts)				
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)				
Stop Condition					
Interrupt Request	None generated				
Generation Timing					
Analog Input Pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins),				
	AN0 to AN7 (8 pins) (1)				
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin				
A/D Converter					

NOTE:


1. ANO_0 to ANO_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

^{1.} If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.

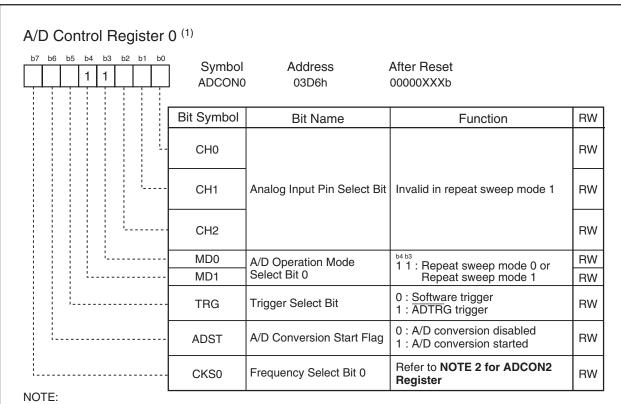
A/D Control Register 1 (1)

- 1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. AN0_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.
- 3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μs or more before starting A/D conversion.

Figure 16.7 ADCON0 Register and ADCON1 Register in Repeat Sweep Mode 0

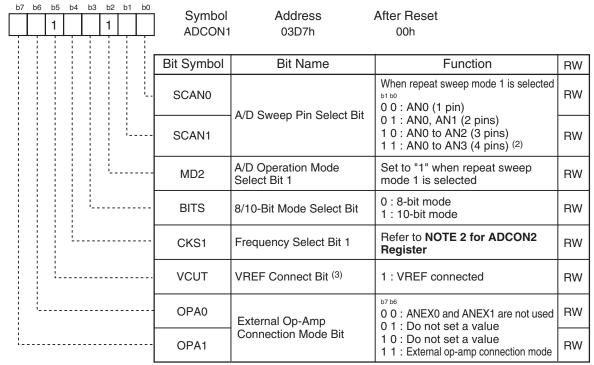
16.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to all pins is repeatedly converted to a digital code. Table 16.6 lists the specifications of repeat sweep mode 1. Figure 16.8 shows the ADCON0 and ADCON1 registers in repeat sweep mode 1.


Table 16.6 Repeat Sweep Mode 1 Specifications

Item	Specification			
Function	The input voltages on all pins selected by the ADGSEL1 to ADGSEL0 bits			
	in the ADCON2 register are A/D converted repeatedly, with priority given			
	to pins selected by the SCAN1 to SCAN0 bits in the ADCON1 register and			
	ADGSEL1 to ADGSEL0 bits.			
	Example: If AN0 selected, input voltages are A/D converted in order of			
	ANO \rightarrow AN1 \rightarrow ANO \rightarrow AN2 \rightarrow ANO \rightarrow AN3, and so on.			
A/D Conversion	When the TRG bit in the ADCON0 register is "0" (software trigger)			
Start Condition	The ADST bit in the ADCON0 register is set to "1" (A/D conversion st			
	When the TRG bit is "1" (ADTRG trigger)			
	Input on the ADTRG pin changes state from high to low after the ADST			
	bit is set to "1" (A/D conversion starts)			
A/D Conversion	Set the ADST bit to "0" (A/D conversion halted)			
Stop Condition				
Interrupt Request	None generated			
Generation Timing				
Analog Input Pins to be Given	Select from AN0 (1 pin), AN0 to AN1 (2 pins), AN0 to AN2 (3 pins),			
Priority when A/D Converted	AN0 to AN3 (4 pins) (1)			
Reading of Result of	Read one of the AD0 to AD7 registers that corresponds to the selected pin			
A/D Converter				

NOTE:


1. ANO_0 to ANO_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

^{1.} If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.

A/D Control Register 1 (1)

- 1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.
- 2. ANO_0 to AN_7, and AN2_0 to AN2_7 can be used in same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.
- 3. If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 μ s or more before starting A/D conversion.

Figure 16.8 ADCON0 Register and ADCON1 Register in Repeat Sweep Mode 1

16.2 Function

16.2.1 Resolution Select Function

The desired resolution can be selected using the BITS bit in the ADCON1 register. If the BITS bit is set to "1" (10-bit conversion accuracy), the A/D conversion result is stored in the bit 0 to bit 9 in the ADi register (i = 0 to 7). If the BITS bit is set to "0" (8-bit conversion accuracy), the A/D conversion result is stored in the bit 0 to bit 7 in the ADi register.

16.2.2 Sample and Hold

If the SMP bit in the ADCON2 register is set to "1" (with sample-and-hold), the conversion speed per pin is increased to 28 ϕ AD cycles for 8-bit resolution or 33 ϕ AD cycles for 10-bit resolution. Sample-and-hold is effective in all operation modes. Select whether or not to use the sample and hold function before starting A/D conversion.

16.2.3 Extended Analog Input Pins

In one-shot and repeat modes, the ANEX0 and ANEX1 pins can be used as analog input pins. Use the OPA1 to OPA0 bits in the ADCON1 register to select whether or not use ANEX0 and ANEX1.

The A/D conversion results of ANEX0 and ANEX1 inputs are stored in the AD0 and AD1 registers, respectively.

16.2.4 External Operation Amplifier (Op-Amp) Connection Mode

Multiple analog inputs can be amplified using a single external op-amp via the ANEX0 and ANEX1 pins. Set the OPA1 to OPA0 bits in the ADCON1 register to "11b" (external op-amp connection mode). The inputs from ANi (i = 0 to 7) ⁽¹⁾ are output from the ANEX0 pin. Amplify this output with an external op-amp before sending it back to the ANEX1 pin. The A/D conversion result is stored in the corresponding ADi register. The A/D conversion speed depends on the response characteristics of the external op-amp. Figure 16.9 shows an example of how to connect the pins in external operation amp.

NOTE:

1. ANO_i and AN2_i can be used the same as ANi.

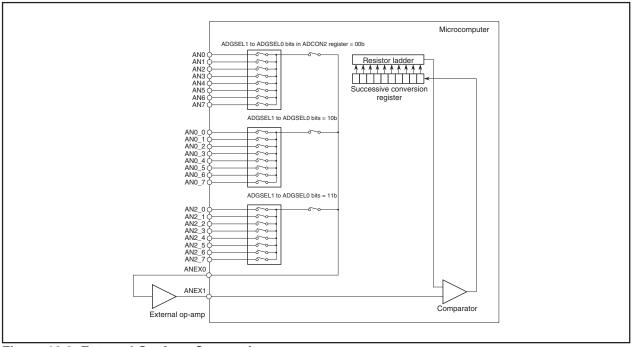


Figure 16.9 External Op-Amp Connection

16.2.5 Current Consumption Reducing Function

When not using the A/D converter, its resistor ladder and reference voltage input pin (VREF) can be separated using the VCUT bit in the ADCON1 register. When separated, no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

To use the A/D converter, set the VCUT bit to "1" (VREF connected) and then set the ADST bit in the ADCON0 register to "1" (A/D conversion start). The VCUT and ADST bits cannot be set to "1" at the same time. Nor can the VCUT bit be set to "0" (VREF unconnected) during A/D conversion.

Note that this does not affect VREF for the D/A converter (irrelevant).

16.2.6 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 16.10 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, microcomputer's internal resistance be R, precision (error) of the A/D converter be X, and the resolution of A/D converter be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

VC is generally VC = VIN
$$\{1 - e^{-\frac{1}{C(R0 + R)}t}\}$$

And when t = T, $VC=VIN - \frac{X}{Y}VIN=VIN(1 - \frac{X}{Y})$

$$e^{-\frac{1}{C(R0 + R)}T} = \frac{X}{Y}$$

$$-\frac{1}{C(R0 + R)}T= ln \frac{X}{Y}$$
Hence, R0 = $-\frac{T}{C \cdot ln \frac{X}{Y}}$

Figure 16.10 shows analog input pin and external sensor equivalent circuit.

When the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB.

When $f(\phi AD) = 10$ MHz, T = 0.3 µs in the A/D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

$$T=0.3~\mu s,~R=7.8~k\Omega,~C=1.5~pF,~X=0.1,$$
 and $Y=1024.$ Hence,

R0 =
$$-\frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \cdot \ln \frac{0.1}{1024}} -7.8 \times 10^{3} = 13.9 \times 10^{3}$$

Thus, the allowable output impedance of the sensor circuit capable of thoroughly driving the A/D converter turns out to be approximately 13.9 $k\Omega$.

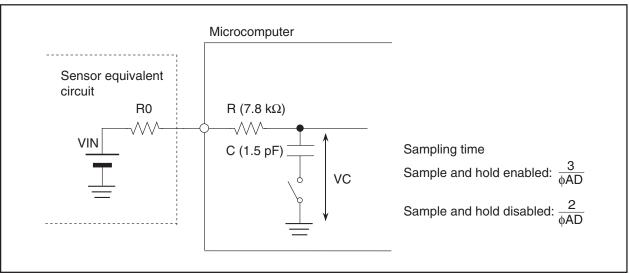


Figure 16.10 Analog Input Pin and External Sensor Equivalent Circuit

17. D/A Converter

This is an 8-bit, R-2R type D/A converter. These are two independent D/A converters.

D/A conversion is performed by writing to the DAi register (i = 0, 1). To output the result of conversion, set the DAiE bit in the DACON register to "1" (output enabled). Before D/A conversion can be used, the corresponding port direction bit must be set to "0" (input mode). Setting the DAiE bit to "1" removes a pull-up from the corresponding port.

Output analog voltage (V) is determined by a set value (n : decimal) in the DAi register.

$$V = VREF \times n/256 (n = 0 to 255)$$

VREF: reference voltage

Table 17.1 lists the performance of the D/A converter. Figure 17.1 shows the block diagram of the D/A converter. Figure 17.2 shows the D/A converter-related registers. Figure 17.3 shows the D/A converter equivalent circuit.

Table 17.1 D/A Converter Performance

Item	Performance		
D/A conversion Method	R-2R method		
Resolution	8 bits		
Analog Output Pin	2 channels (DA0 and DA1)		

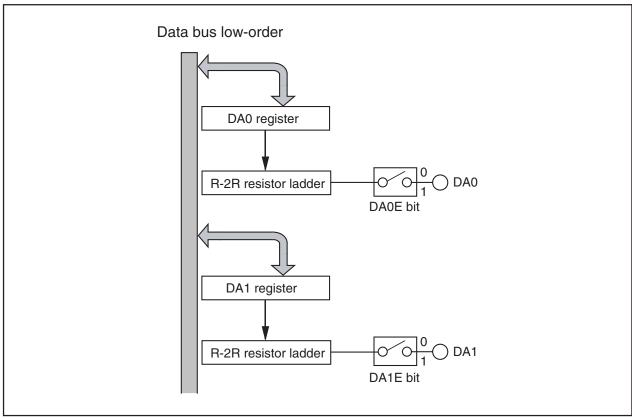
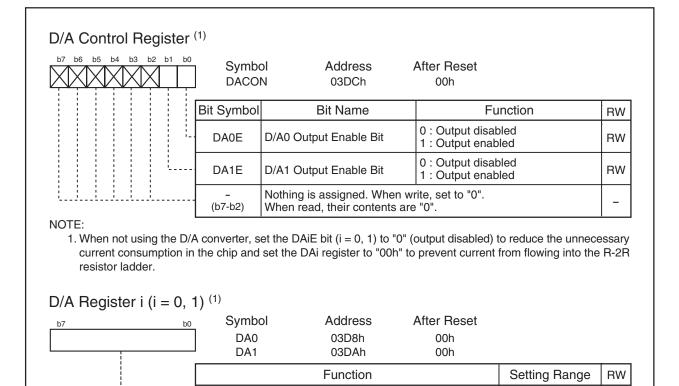



Figure 17.1 D/A Converter Block Diagram

RW

00h to FFh

1. When not using the D/A converter, set the DAiE bit (i = 0, 1) to "0" (output disabled) to reduce the unnecessary current consumption in the chip and set the DAi register to "00h" to prevent current from flowing into the R-2R resistor ladder.

Output value of D/A conversion

Figure 17.2 DACON Register, DA0 and DA1 Registers

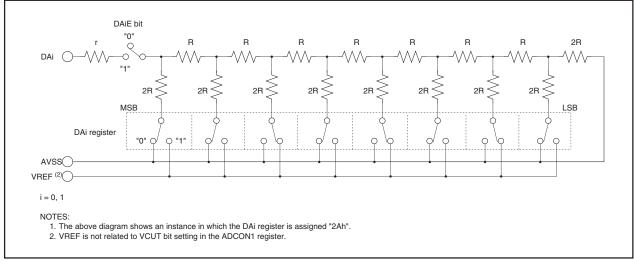


Figure 17.3 D/A Converter Equivalent Circuit

M16C/6N Group (M16C/6NL, M16C/6NN)

18. CRC Calculation

The Cyclic Redundancy Check (CRC) operation detects an error in data blocks. The microcomputer uses a generator polynomial of CRC-CCITT (X16 + X12 + X5 + 1) to generate CRC code.

The CRC code consists of 16 bits which are generated for each data block in given length, separated in 8-bit unit. After the initial value is set in the CRCD register, the CRC code is set in that register each time one byte of data is written to the CRCIN register. CRC code generation for one-byte data is finished in two cycles.

Figure 18.1 shows the block diagram of the CRC circuit. Figure 18.2 shows the CRC-related registers. Figure 18.3 shows the calculation example using the CRC operation.

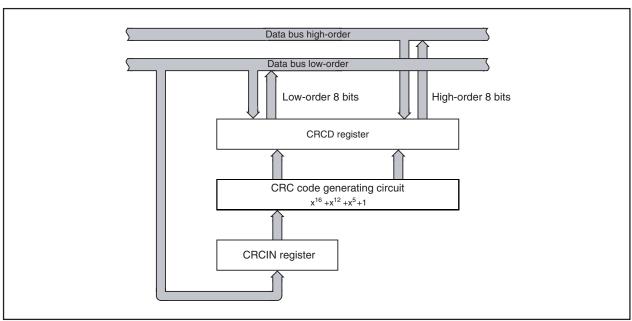


Figure 18.1 CRC Circuit Block Diagram

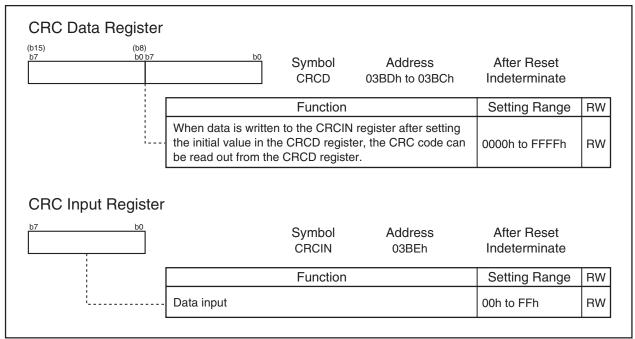
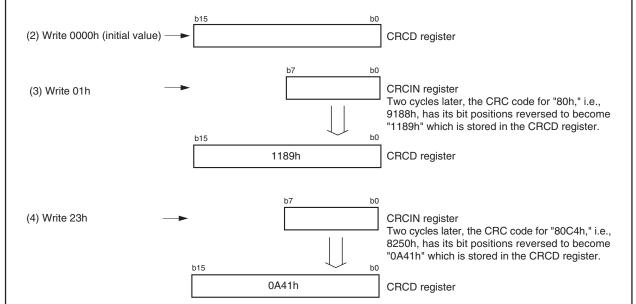
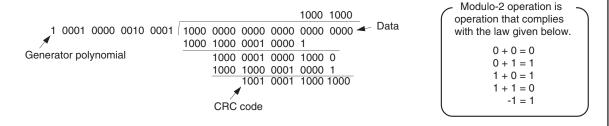


Figure 18.2 CRCD Register and CRCIN Register


Setup procedure and CRC operation when generating CRC code "80C4h"

• CRC operation performed by the M16C

CRC code: Remainder of a division in which the value written to the CRCIN register with its bit positions reversed is divided by the generator polynomial


Generator polynomial: $X^6 + X^{12} + X^5 + 1(1\ 0001\ 0000\ 0010\ 0001b)$

- Setting procedure
- (1) Reverse the bit positions of the value "80C4h" by program in 1-byte unit. "80h" ightarrow "01h", "C4h" ightarrow "23h"

• Details of CRC operation

As shown in (3) above, bit position of "01h" (00000001b) written to the CRCIN register is inversed and becomes "10000000b". Add "1000 0000 0000 0000 0000 0000 0000b", as "10000000b" plus 16 digits, to "0000 0000 0000 0000 0000 0000b", as "0000 0000 0000 0000b" plus 8 digits as the default value of the CRCD register to perform the modulo-2 division.

"0001 0001 1000 1001b (1189h)", the remainder "1001 0001 1000 1000b (9188h)" with inversed bit position, can be read from the CRCD register.

When going on to (4) above, "23h (00100011b)" written in the CRCIN register is inversed and becomes "11000100b". Add "1100 0100 0000 0000 0000 0000 0000b", as "11000100b" plus 16 digits, to "1001 0001 1000 1000 0000 0000b", as "1001 0001 1000 1000b" plus 8 digits as a remainder of (3) left in the CRCD register to perform the modulo-2 division. "0000 1010 0100 0001b (0A41h)", the remainder with inversed bit position, can be read from CRCD register.

Figure 18.3 CRC Calculation

19. CAN Module

The CAN (Controller Area Network) module for the M16C/6N Group (M16C/6NL, M16C/6NN) of microcomputers is a communication controller implementing the CAN 2.0B protocol. The M16C/6N Group (M16C/6NL, M16C/6NN) contains one CAN module which can transmit and receive messages in both standard (11-bit) ID and extended (29-bit) ID formats.

Figure 19.1 shows a block diagram of the CAN module.

External CAN bus driver and receiver are required.

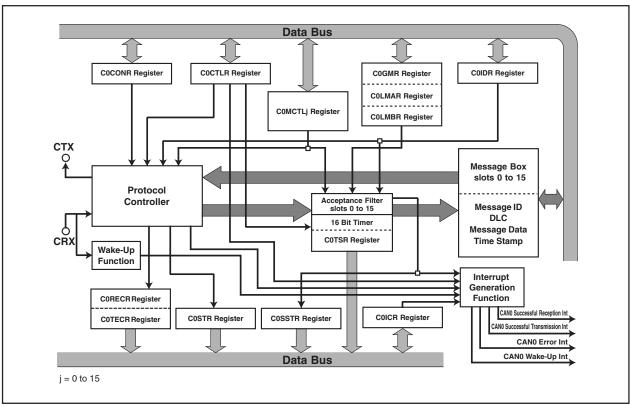


Figure 19.1 CAN Module Block Diagram

CTX/CRX: CAN I/O pins.

Protocol controller: This controller handles the bus arbitration and the CAN protocol services, i.e. bit

timing, stuffing, error status etc.

Message box: This memory block consists of 16 slots that can be configured either as transmitter

or receiver. Each slot contains an individual ID, data length code, a data field

(8 bytes) and a time stamp.

Acceptance filter: This block performs filtering operation for received messages. For the filtering

operation, the C0GMR register, the C0LMAR register, or the C0LMBR register is

used.

16 bit timer: Used for the time stamp function. When the received message is stored in the

message memory, the timer value is stored as a time stamp.

Wake-up function: CANO wake-up interrupt request is generated by a message from the CAN bus.

Interrupt generation function: The interrupt requests are generated by the CAN module. CANO successful

reception interrupt, CANO successful transmission interrupt, CANO error interrupt

and CAN0 wake-up interrupt.

19.1 CAN Module-Related Registers

The CAN0 module has the following registers.

19.1.1 CAN Message Box

A CAN module is equipped with 16 slots (16 bytes or 8 words each). Slots 14 and 15 can be used as Basic CAN.

- Priority of the slots: The smaller the number of the slot, the higher the priority, in both transmission and reception.
- A program can define whether a slot is defined as transmitter or receiver.

19.1.2 Acceptance Mask Registers

A CAN module is equipped with 3 masks for the acceptance filter.

- CAN0 global mask register (C0GMR register: 6 bytes)
 Configuration of the masking condition for acceptance filtering processing to slots 0 to 13
- CAN0 local mask A register (C0LMAR register: 6 bytes)
 Configuration of the masking condition for acceptance filtering processing to slot 14
- CAN0 local mask B register (C0LMBR register: 6 bytes)
 Configuration of the masking condition for acceptance filtering processing to slot 15

19.1.3 CAN SFR Registers

- CAN0 message control register j (j = 0 to 15) (C0MCTLj register: 8 bits × 16)
 Control of transmission and reception of a corresponding slot
- CANi control register (i = 0, 1) (CiCTLR register: 16 bits)
 Control of the CAN protocol
- CAN0 status register (COSTR register: 16 bits)
 Indication of the protocol status
- CAN0 slot status register (COSSTR register: 16 bits)
 Indication of the status of contents of each slot
- CAN0 interrupt control register (C0ICR register: 16 bits) Selection of "interrupt enabled or disabled" for each slot
- CAN0 extended ID register (C0IDR register: 16 bits)
 Selection of ID format (standard or extended) for each slot
- CAN0 configuration register (C0CONR register: 16 bits)
 Configuration of the bus timing
- CAN0 receive error count register (C0RECR register: 8 bits)
 Indication of the error status of the CAN module in reception: the counter value is incremented or decremented according to the error occurrence.
- CAN0 transmit error count register (COTECR register: 8 bits)
 Indication of the error status of the CAN module in transmission: the counter value is incremented or decremented according to the error occurrence.
- CAN0 time stamp register (C0TSR register: 16 bits)
 Indication of the value of the time stamp counter
- CANO acceptance filter support register (C0AFS register: 16 bits)
 Decoding the received ID for use by the acceptance filter support unit

Explanation of each register is given below.

19.2 CAN0 Message Box

Table 19.1 shows the memory mapping of the CAN0 message box.

It is possible to access to the message box in byte or word.

Mapping of the message contents differs from byte access to word access. Byte access or word access can be selected by the MsgOrder bit of the COCTLR register.

Table 19.1 Memory Mapping of CANO Message Box

Address	Message Content (Memory Mapping)		
Address	Byte access (8 bits)	Word access (16 bits)	
0060h + n • 16 + 0	SID10 to SID6	SID5 to SID0	
0060h + n • 16 + 1	SID5 to SID0	SID10 to SID6	
0060h + n • 16 + 2	EID17 to EID14	EID13 to EID6	
0060h + n • 16 + 3	EID13 to EID6	EID17 to EID14	
0060h + n • 16 + 4	EID5 to EID0	Data Length Code (DLC)	
0060h + n • 16 + 5	Data Length Code (DLC)	EID5 to EID0	
0060h + n • 16 + 6	Data byte 0	Data byte 1	
006016 + n • 16 + 7	Data byte 1	Data byte 0	
•		•	
0060h + n • 16 + 13	Data byte 7	Data byte 6	
0060h + n • 16 + 14	Time stamp high-order byte	Time stamp low-order byte	
0060h + n • 16 + 15	Time stamp low-order byte	Time stamp high-order byte	

n = 0 to 15: the number of the slot

Figures 19.2 and 19.3 show the bit mapping in each slot in byte access and word access. The content of each slot remains unchanged unless transmission or reception of a new message is performed.

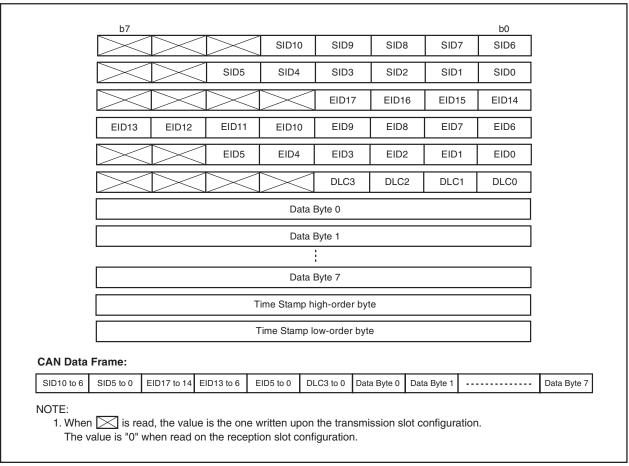


Figure 19.2 Bit Mapping in Byte Access

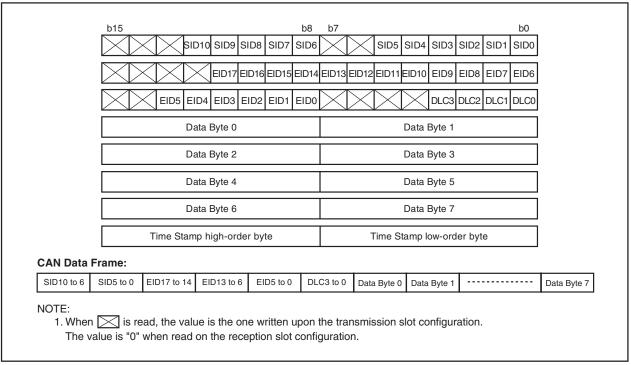


Figure 19.3 Bit Mapping in Word Access

Figures 19.4 and 19.5 show the C0GMR register, the C0LMAR register, and the C0LMBR register, in which bit mapping in byte access and word access are shown.

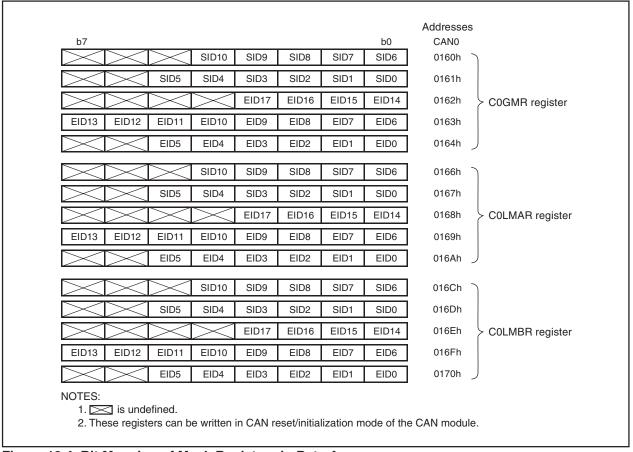


Figure 19.4 Bit Mapping of Mask Registers in Byte Access

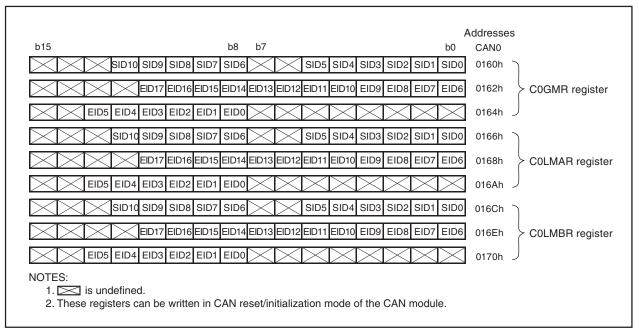
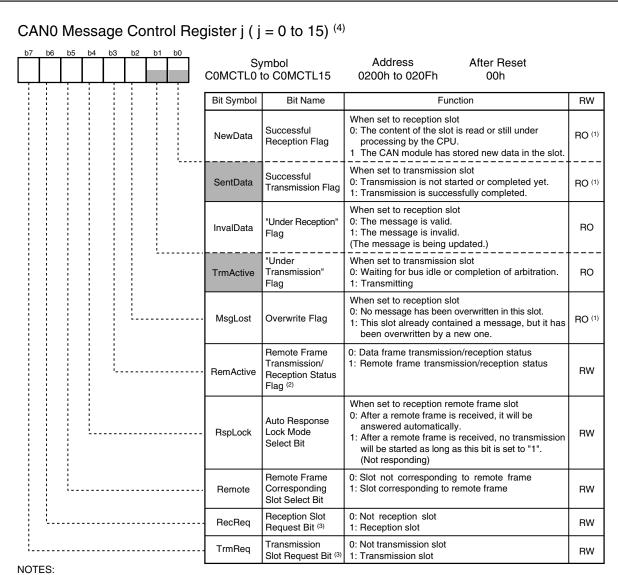
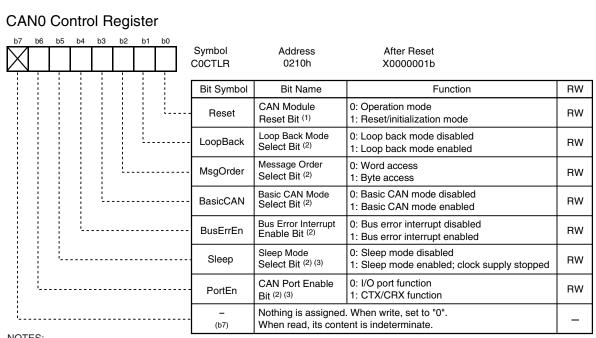



Figure 19.5 Bit Mapping of Mask Registers in Word Access


19.4 CAN SFR Registers

Figures 19.6 to 19.12 show the CAN SFR registers.


- 1. As for write, only writing "0" is possible. The value of each bit is written when the CAN module enters the respective state.
- 2. In Basic CAN mode, slots 14 and 15 serve as data format identification flag. The RemActive bit is set to "0" if the data frame is received and it is set to "1" if the remote frame is received.
- 3. One slot cannot be defined as reception slot and transmission slot at the same time.
- 4. This register can not be set in CAN reset/initialization mode of the CAN module

Figure 19.6 C0MCTLj Register

NOTES:

- 1. When the Reset bit is set to "1" (CAN reset/initialization mode), check that the State_Reset bit in the COSTR register is set to "1" (Reset mode).
- 2. Change this bit only in the CAN reset/initialization mode.
- 3. When using CAN0 wake-up interrupt, set these bits to "1".

- 1. When the TSReset bit = 1, the C0TSR register is set to "0000h". After this, the bit is automatically set to "0".
- 2. When the RetBusOff bit = 1, the CORECR and COTECR registers are set to "00h". After this, this bit is automatically set to "0".
- 3. Change this bit only in the CAN reset/initialization mode.
- 4. When the listen-only mode is selected, do not request the transmission.

Figure 19.7 C0CTLR Register

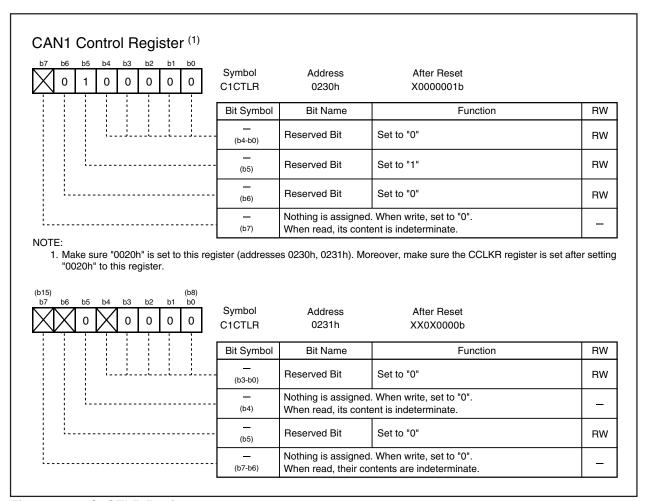


Figure 19.8 C1CTLR Register

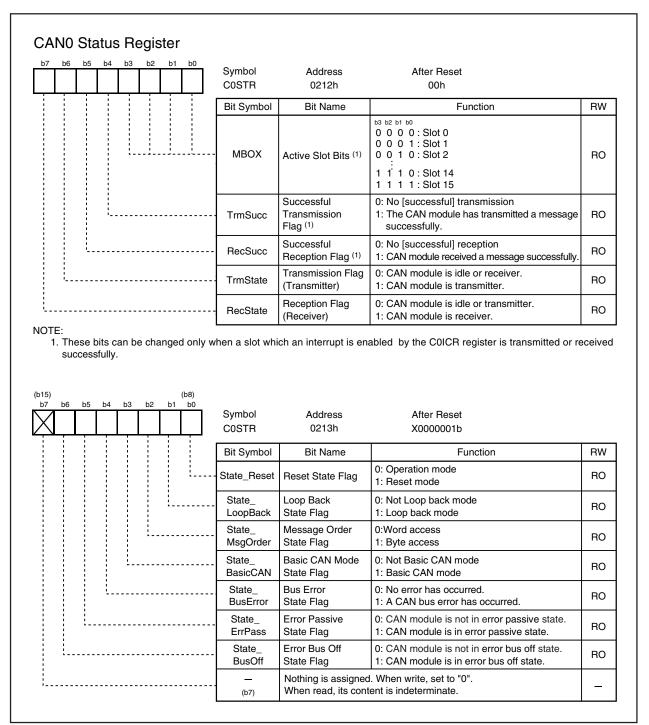


Figure 19.9 COSTR Register

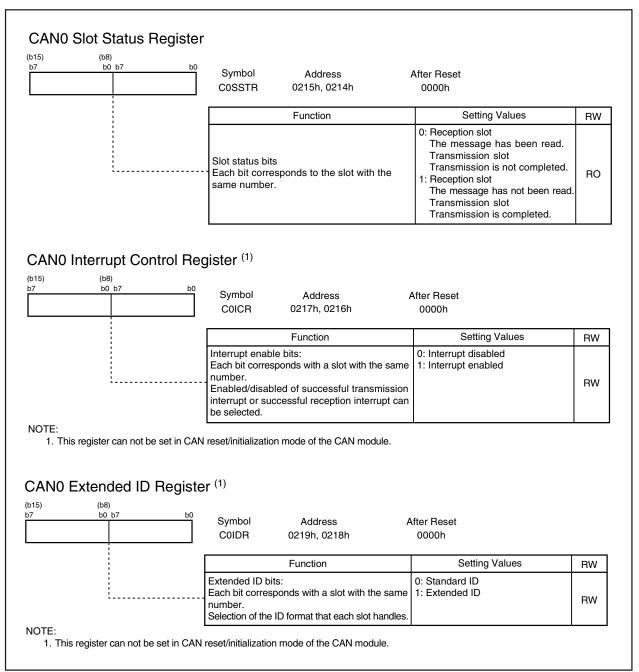


Figure 19.10 COSSTR Register, COICR Register and COIDR Register

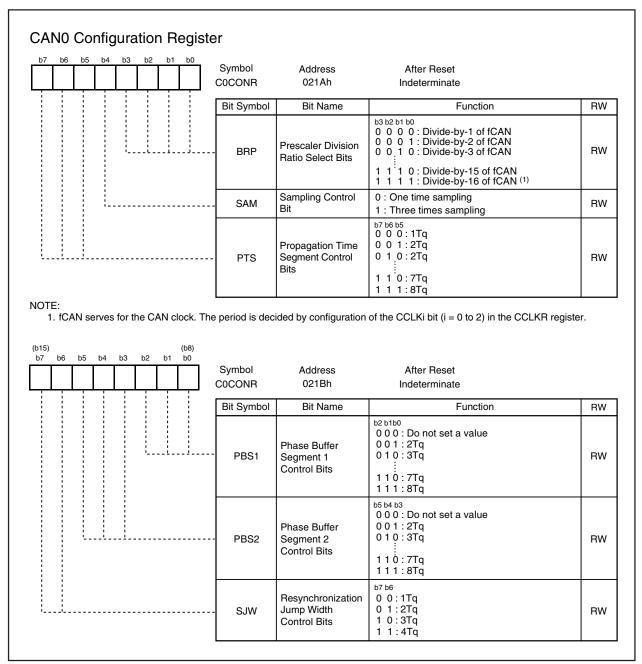


Figure 19.11 C0CONR Register

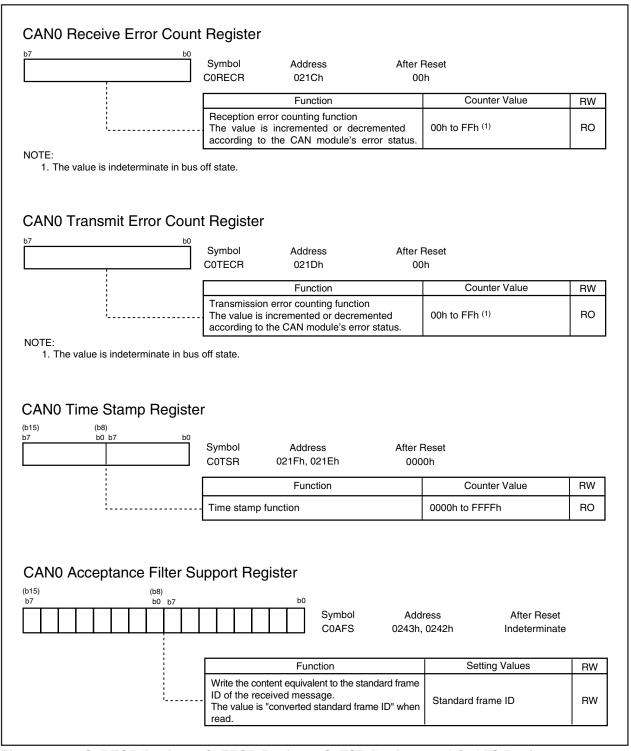


Figure 19.12 CORECR Register, COTECR Register, COTSR Register and COAFS Register

19.5 Operational Modes

The CAN module has the following four operational modes.

- CAN Reset/Initialization Mode
- CAN Operation Mode
- CAN Sleep Mode
- CAN Interface Sleep Mode

Figure 19.13 shows transition between operational modes.

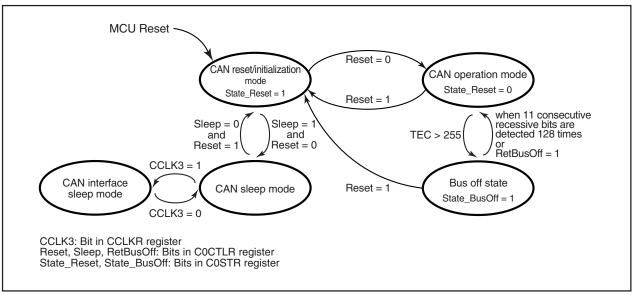


Figure 19.13 Transition Between Operational Modes

19.5.1 CAN Reset/Initialization Mode

The CAN reset/initialization mode is activated upon MCU reset or by setting the Reset bit in the C0CTLR register to "1". If the Reset bit is set to "1", check that the State_Reset bit in the C0STR register is set to "1". Entering the CAN reset/initialization mode initiates the following functions by the module:

- CAN communication is impossible.
- When the CAN reset/initialization mode is activated during an ongoing transmission in operation mode, the module suspends the mode transition until completion of the transmission (successful, arbitration loss, or error detection). Then, the State_Reset bit is set to "1", and the CAN reset/initialization mode is activated.
- The C0MCTLj (j = 0 to 15), C0STR, C0ICR, C0IDR, C0RECR, C0TECR and C0TSR registers are initialized. All these registers are locked to prevent CPU modification.
- The COCTLR, COCONR, COGMR, COLMAR and COLMBR registers and the CANO message box retain their contents and are available for CPU access.

19.5.2 CAN Operation Mode

The CAN operation mode is activated by setting the Reset bit in the COCTLR register to "0". If the Reset bit is set to "0", check that the State_Reset bit in the COSTR register is set to "0".

If 11 consecutive recessive bits are detected after entering the CAN operation mode, the module initiates the following functions:

- The module's communication functions are released and it becomes an active node on the network and may transmit and receive CAN messages.
- Release the internal fault confinement logic including receive and transmit error counters. The module may leave the CAN operation mode depending on the error counts.

Within the CAN operation mode, the module may be in three different sub modes, depending on which type of communication functions are performed:

- Module idle : The modules receive and transmit sections are inactive.
- Module receives: The module receives a CAN message sent by another node.
- Module transmits: The module transmits a CAN message. The module may receive its own message simultaneously when the LoopBack bit in the C0CTLR register = 1 (Loop back mode enabled).

Figure 19.14 shows sub modes of the CAN operation mode.

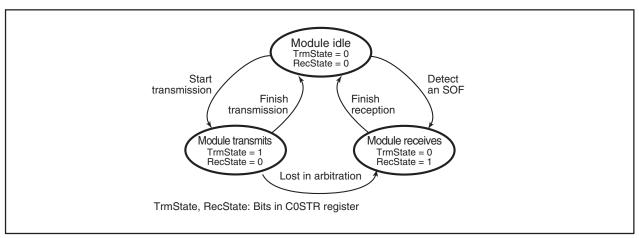


Figure 19.14 Sub Modes of CAN Operation Mode

19.5.3 CAN Sleep Mode

The CAN sleep mode is activated by setting the Sleep bit to "1" and the Reset bit to "0" in the COCTLR register. It should never be activated from the CAN operation mode but only via the CAN reset/initialization mode.

Entering the CAN sleep mode instantly stops the clock supply to the module and thereby reduces power dissipation.

19.5.4 CAN Interface Sleep Mode

The CAN interface sleep mode is activated by setting the CCLK3 bit in the CCLKR register to "1". It should never be activated but only via the CAN sleep mode.

Entering the CAN interface sleep mode instantly stops the clock supply to the CPU Interface in the module and thereby reduces power dissipation.

19.5.5 Bus Off State

The bus off state is entered according to the fault confinement rules of the CAN specification. When returning to the CAN operation mode from the bus off state, the module has the following two cases. In this time, the value of any CAN registers, except COSTR, CORECR and COTECR registers, does not change.

- (1) When 11 consecutive recessive bits are detected 128 times The module enters instantly into error active state and the CAN communication becomes possible immediately.
- (2) When the RetBusOff bit in the COCTLR register = 1 (Force return from buss off)

 The module enters instantly into error active state, and the CAN communication becomes possible again after 11 consecutive recessive bits are detected.

19.6 Configuration CAN Module System Clock

The M16C/6N Group (M16C/6NL, M16C/6NN) has a CAN module system clock select circuit.

Configuration of the CAN module system clock can be done through manipulating the CCLKR register and the BRP bit in the C0CONR register.

For the CCLKR register, refer to 8. Clock Generating Circuit.

Figure 19.15 shows a block diagram of the clock generating circuit of the CAN module system.

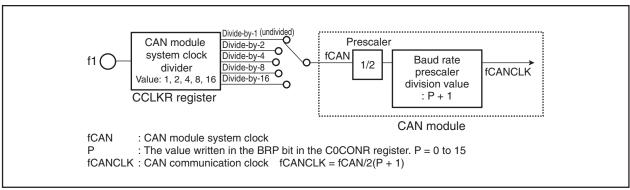


Figure 19.15 Block Diagram of CAN Module System Clock Generating Circuit

19.7 Bit Timing Configuration

The bit time consists of the following four segments:

- Synchronization segment (SS)
 - This serves for monitoring a falling edge for synchronization.
- Propagation time segment (PTS)
 - This segment absorbs physical delay on the CAN network which amounts to double the total sum of delay on the CAN bus, the input comparator delay, and the output driver delay.
- Phase buffer segment 1 (PBS1)
 - This serves for compensating the phase error. When the falling edge of the bit falls later than expected, the segment can become longer by the maximum of the value defined in SJW.
- Phase buffer segment 2 (PBS2)
 - This segment has the same function as the phase buffer segment 1. When the falling edge of the bit falls earlier than expected, the segment can become shorter by the maximum of the value defined in SJW.

Figure 19.16 shows the bit timing.

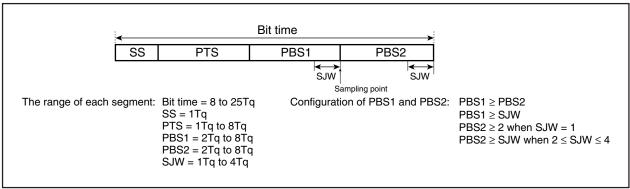


Figure 19.16 Bit Timing

19.8 Bit-rate

Bit-rate depends on f1, the division value of the CAN module system clock, the division value of the baud rate prescaler, and the number of Tq of one bit.

Table 19.2 shows the examples of bit-rate.

Table 19.2 Examples of Bit-rate

Bit-rate	24MHz	20MHz	16MHz	10MHz	8MHz
1Mbps	12Tq (1)	10Tq (1)	8Tq (1)	_	_
500kbps	12Tq (2)	10Tq (2)	8Tq (2)	10Tq (1)	8Tq (1)
	24Tq (1)	20Tq (1)	16Tq (1)	_	_
125kbps	12Tq (8)	10Tq (8)	8Tq (8)	10Tq (4)	8Tq (4)
	16Tq (6)	20Tq (4)	16Tq (4)	20Tq (2)	16Tq (2)
	24Tq (4)	_	_	_	_
83.3kbps	12Tq (12)	10Tq (12)	8Tq (12)	10Tq (6)	8Tq (6)
	16Tq (9)	20Tq (6)	16Tq (6)	20Tq (3)	16Tq (3)
	24Tq (6)	_	_	_	_
33.3kbps	12Tq (30)	10Tq (30)	8Tq (30)	10Tq (15)	8Tq (15)
	24Tq (15)	20Tq (15)	16Tq (15)	_	_

NOTE:

19.8.1 Calculation of Bit-rate

f1

2 × "fCAN division value (1)" × "baud rate prescaler division value (2)" × "number of Tq of one bit"

- 1. fCAN division value = 1, 2, 4, 8, 16 fCAN division value: a value selected in the CCLKR register
- 2. Baud rate prescaler division value = P + 1 (P: 0 to 15)P: a value selected in the BRP bit in the CiCONR register (i = 0, 1)

^{1.} The number in () indicates a value of "fCAN division value" multiplied by "baud rate prescaler division value".

19.9 Acceptance Filtering Function and Masking Function

These functions serve the users to select and receive a facultative message. The COGMR register, the COLMAR register, and the COLMBR register can perform masking to the standard ID and the extended ID of 29 bits. The COGMR register corresponds to slots 0 to 13, the COLMAR register corresponds to slot 14, and the COLMBR register corresponds to slot 15. The masking function becomes valid to 11 bits or 29 bits of a received ID according to the value in the corresponding slot of the COIDR register upon acceptance filtering operation. When the masking function is employed, it is possible to receive a certain range of IDs. Figure 19.17 shows correspondence of the mask registers and slots, Figure 19.18 shows the acceptance function.

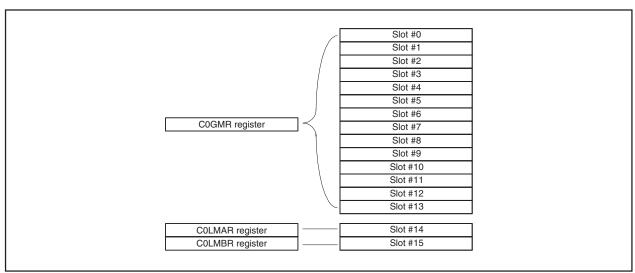


Figure 19.17 Correspondence of Mask Registers to Slots

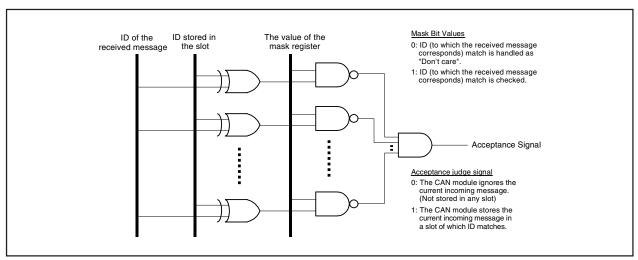


Figure 19.18 Acceptance Function

When using the acceptance function, note the following points.

- (1) When one ID is defined in two slots, the one with a smaller number alone is valid.
- (2) When it is configured that slots 14 and 15 receive all IDs with Basic CAN mode, slots 14 and 15 receive all IDs which are not stored into slots 0 to 13.

M16C/6N Group (M16C/6NL, M16C/6NN)

The acceptance filter support unit has a function to judge valid/invalid of a received ID through table search. The IDs to receive are registered in the data table; a received ID is stored in the COAFS register, and table search is performed with a decoded received ID. The acceptance filter support unit can be used for the IDs of the standard frame only.

The acceptance filter support unit is valid in the following cases.

- When the ID to receive cannot be masked by the acceptance filter. (Example) IDs to receive: 078h, 087h, 111h
- When there are too many IDs to receive; it would take too much time to filter them by software.

Figure 19.19 shows the write and read of the COAFS register in word access.

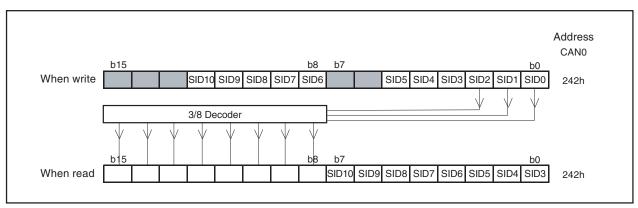


Figure 19.19 Write/read of COAFS Register in Word Access

19.11 Basic CAN Mode

When the BasicCAN bit in the C0CTLR register is set to "1" (Basic CAN mode enabled), slots 14 and 15 correspond to Basic CAN mode. In normal operation mode, each slot can handle only one type message at a time, either a data frame or a remote frame by setting C0MCTLj register (j = 0 to 15). However, in Basic CAN mode, slots 14 and 15 can receive both types of message at the same time.

When slots 14 and 15 are defined as reception slots in Basic CAN mode, received messages are stored in slots 14 and 15 alternately.

Which type of message has been received can be checked by the RemActive bit in the C0MCTLj register. Figure 19.20 shows the operation of slots 14 and 15 in Basic CAN mode.

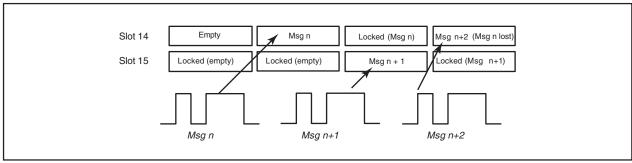


Figure 19.20 Operation of Slots 14 and 15 in Basic CAN Mode

When using Basic CAN mode, note the following points.

- (1) Setting of Basic CAN mode has to be done in CAN reset/initialization mode.
- (2) Select the same ID for slots 14 and 15. Also, setting of the C0LMAR and C0LMBR register has to be the same.
- (3) Define slots 14 and 15 as reception slot only.
- (4) There is no protection available against message overwrite. A message can be overwritten by a new message.
- (5) Slots 0 to 13 can be used in the same way as in normal CAN operation mode.

19.12 Return from Bus Off Function

When the protocol controller enters bus off state, it is possible to make it forced return from bus off state by setting the RetBusOff bit in the COCTLR register to "1" (Force return from bus off). At this time, the error state changes from bus off state to error active state. If the RetBusOff bit is set to "1", the CORECR and COTECR registers are initialized and the State_BusOff bit in the COSTR register is set to "0" (CAN module is not in error bus off state). However, registers of the CAN module such as COCONR register and the content of each slot are not initialized.

19.13 Time Stamp Counter and Time Stamp Function

When the COTSR register is read, the value of the time stamp counter at the moment is read. The period of the time stamp counter reference clock is the same as that of 1 bit time that is configured by the COCONR register. The time stamp counter functions as a free run counter.

The 1 bit time period can be divided by 1 (undivided), 2, 4 or 8 to produce the time stamp counter reference clock. Use the TSPreScale bit in the COCTLR register to select the divide-by-n value.

The time stamp counter is equipped with a register that captures the counter value when the protocol controller regards it as a successful reception. The captured value is stored when a time stamp value is stored in a reception slot.

19.14 Listen-Only Mode

When the RXOnly bit in the COCTLR register is set to "1", the module enters listen-only mode.

In listen-only mode, no transmission, such as data frames, error frames, and ACK response, is performed to bus.

When listen-only mode is selected, do not request the transmission.

19.15 Reception and Transmission

Table 19.3 shows configuration of CAN reception and transmission mode.

Table 19.3 Configuration of CAN Reception and Transmission Mode

TrmReq	RecReq	Remote	RspLock	Communication Mode of Slot			
0	0	-	-	Communication environment configuration mode:			
				configure the communication mode of the slot.			
0	1	0	0	Configured as a reception slot for a data frame.			
1	0	1	0	Configured as a transmission slot for a remote frame.			
				(At this time the RemActive = 1.)			
				After completion of transmission, this functions as a reception			
				slot for a data frame. (At this time the RemActive = 0.)			
				However, when an ID that matches on the CAN bus is detected			
				before remote frame transmission, this immediately functions			
				as a reception slot for a data frame.			
1	0	0	0	Configured as a transmission slot for a data frame.			
0	1	1	1/0	Configured as a reception slot for a remote frame.			
				(At this time the RemActive = 1.)			
				After completion of reception, this functions as a transmission			
				slot for a data frame. (At this time the RemActive = 0.)			
				However, transmission does not start as long as RspLock bit			
				remains "1"; thus no automatic response.			
				Response (transmission) starts when the RspLock bit is set to "0".			

TrmReq, RecReq, Remote, RspLock, RemActive, RspLock: Bits in C0MCTLj register (j = 0 to 15)

When configuring a slot as a reception slot, note the following points.

- (1) Before configuring a slot as a reception slot, be sure to set the C0MCTLj register to "00h".
- (2) A received message is stored in a slot that matches the condition first according to the result of reception mode configuration and acceptance filtering operation. Upon deciding in which slot to store, the smaller the number of the slot is, the higher priority it has.
- (3) In normal CAN operation mode, when a CAN module transmits a message of which ID matches, the CAN module never receives the transmitted data. In loop back mode, however, the CAN module receives back the transmitted data. In this case, the module does not return ACK.

When configuring a slot as a transmission slot, note the following points.

- (1) Before configuring a slot as a transmission slot, be sure to set the C0MCTLj registers to "00h".
- (2) Set the TrmReq bit in the COMCTLj register to "0" (not transmission slot) before rewriting a transmission slot.
- (3) A transmission slot should not be rewritten when the TrmActive bit in the C0MCTLj register is "1" (transmitting).

If it is rewritten, an indeterminate data will be transmitted.

M16C/6N Group (M16C/6NL, M16C/6NN)

19.15.1 Reception

Figure 19.21 shows the behavior of the module when receiving two consecutive CAN messages, that fit into the slot of the shown C0MCTLj register (j = 0 to 15) and leads to losing/overwriting of the first message.

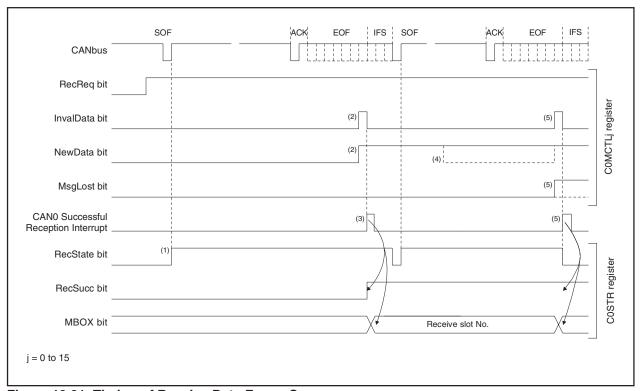


Figure 19.21 Timing of Receive Data Frame Sequence

- (1) On monitoring a SOF on the CAN bus the RecState bit in the C0STR register becomes "1" (CAN module is receiver) immediately, given the module has no transmission pending.
- (2) After successful reception of the message, the NewData bit in the C0MCTLj register of the receiving slot becomes "1" (stored new data in slot). The InvalData bit in the C0MCTLj register becomes "1" (message is being updated) at the same time and the InvalData bit becomes "0" (message is valid) again after the complete message was transferred to the slot.
- (3) When the interrupt enable bit in the COICR register of the receiving slot = 1 (interrupt enabled), the CANO successful reception interrupt request is generated and the MBOX bit in the COSTR register is changed. It shows the slot number where the message was stored and the RecSucc bit in the COSTR register is active.
- (4) Read the message out of the slot after setting the New Data bit to "0" (the content of the slot is read or still under processing by the CPU) by a program.
- (5) When next CAN message is received before the the NewData bit is set to "0" by a program or a receive request to a slot is canceled, the MsgLost bit in the C0MCTLj register is set to "1" (message has been overwritten). The new received message is transferred to the slot. Generating of an interrupt request and change of the COSTR register are same as in 3).

19.15.2 Transmission

Figure 19.22 shows the timing of the transmit sequence.

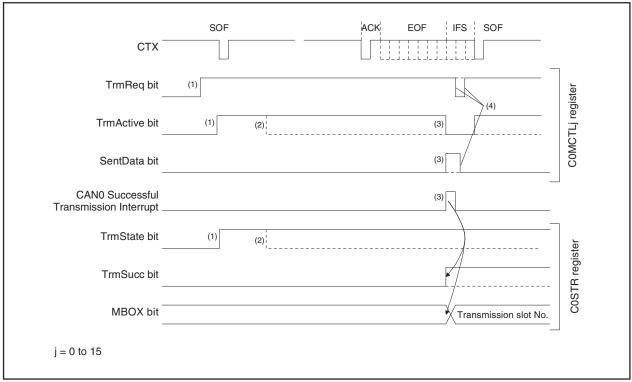


Figure 19.22 Timing of Transmit Sequence

- (1) If the TrmReq bit in the C0MCTLj register (j = 0 to 15) is set to "1" (Transmission slot) in the bus idle state, the TrmActive bit in the C0MCTLj register and the TrmState bit in the C0STR register are set to "1" (Transmitting/Transmitter), and CAN module starts the transmission.
- (2) If the arbitration is lost after the CAN module starts the transmission, the TrmActive and TrmState bits are set to "0".
- (3) If the transmission has been successful without lost in arbitration, the SentData bit in the COMCTLj register is set to "1" (Transmission is successfully completed) and TrmActive bit is set to "0" (Waiting for bus idle or completion of arbitration). And when the interrupt enable bits in the COICR register = 1 (Interrupt enabled), CAN0 successful transmission interrupt request is generated and the MBOX (the slot number which transmitted the message) and TrmSucc bit in the COSTR register are changed.
- (4) When starting the next transmission, set the SentData and TrmReq bits to "0". And set the TrmReq bit to "1" after checking that the SentData and TrmReq bits are set to "0".

19.16 CAN Interrupt

The CAN module provides the following CAN interrupts.

- CAN0 Successful Reception Interrupt
- CANO Successful Transmission Interrupt
- CAN0 Error Interrupt: Error Passive State

Error BusOff State

Bus Error (this feature can be disabled separately)

CAN0 Wake-up Interrupt

When the CPU detects the CAN0 successful reception/transmission interrupt request, the MBOX bit in the COSTR register must be read to determine which slot has generated the interrupt request.

20. Programmable I/O Ports

M16C/6N Group (M16C/6NL, M16C/6NN)

The programmable input/output ports (hereafter referred to simply as I/O ports) consist of 87 lines P0 to P10 in the 100-pin version and consist of 113 lines P0 to P14 in the 128-pin version. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high every 4 lines. P8_5 is an input-only port and does not have a pull-up resistor. Port P8_5 shares the pin with $\overline{\text{NMI}}$, so that the $\overline{\text{NMI}}$ input level can be read from the P8_5 bit in the P8 register.

Table 20.1 lists the number of pins of the I/O ports of each package. Figures 20.1 to 20.5 show the I/O ports. Figure 20.6 shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output pin or a bus control pin.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, SI/O4 output or D/A converter output pin, set the direction bit for that pin to "0" (input mode). Any pin used as an output pin for peripheral functions other than the SI/O4 and D/A converter is directed for output no matter how the corresponding direction bit is set.

When using any pin as a bus control pin, refer to 7.2 Bus Control.

Table 20.1 Number of Pins of I/O Ports of Each Package

Table 20.1 Number of Fills of 1/0 Forts of Each Fackage						
	128-pin Version	100-pin Version				
I/O Ports	P0_0 to P0_7	P0_0 to P0_7				
	P1_0 to P1_7	P1_0 to P1_7				
	P2_0 to P2_7	P2_0 to P2_7				
	P3_0 to P3_7	P3_0 to P3_7				
	P4_0 to P4_7	P4_0 to P4_7				
	P5_0 to P5_7	P5_0 to P5_7				
	P6_0 to P6_7	P6_0 to P6_7				
	P7_0 to P7_7	P7_0 to P7_7				
	P8_0 to P8_4, P8_6, P8_7	P8_0 to P8_4, P8_6, P8_7				
	(P8_5 is an input port)	(P8_5 is an input port)				
	P9_0 to P9_7	P9_0 to P9_7				
	P10_0 to P10_7	P10_0 to P10_7				
	P11_0 to P11_7					
	P12_0 to P12_7					
	P13_0 to P13_7					
	P14_0, P14_1					
Total	113 pins	87 pins				

Figure 20.7 shows the PDi register.

M16C/6N Group (M16C/6NL, M16C/6NN)

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

During memory expansion and microprocessor modes, the PDi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA, and BCLK) cannot be modified.

No direction register bit for P8 5 is available.

20.2 Pi Register (100-pin Version: i = 0 to 10, 128-pin Version: i = 0 to 13), PC14 Register

Figure 20.8 shows the Pi register.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the input/output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and

data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

During memory expansion and microprocessor modes, the Pi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA, and BCLK) cannot be modified.

About the port P14 (128-pin version), Figure 20.8 shows the PC14 register.

20.3 PURj Register (100-pin Version: j = 0 to 2, 128-pin Version: j = 0 to 3)

Figures 20.9 and 20.10 show the PURj register.

The PURj register bits can be used to select whether or not to pull the corresponding port high in 4-bit unit. The port selected to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode

However, the pull-up control register has no effect on P0 to P3, P4_0 to P4_3, and P5 during memory expansion and microprocessor modes. Although the register contents can be modified, no pull-up resistors are connected

When using the ports P11 to P14, set the PUR37 bit in the PUR3 register to "1" (P11 to P14 are usable).

20.4 PCR Register

Figure 20.11 shows the PCR register.

When the P1 register is read after setting the PCR0 bit in the PCR register to "1", the corresponding port latch can be read no matter how the PD1 register is set.

Tables 20.2 and 20.3 list an example connection of unused pins. Figure 20.12 shows an example connection of unused pins.

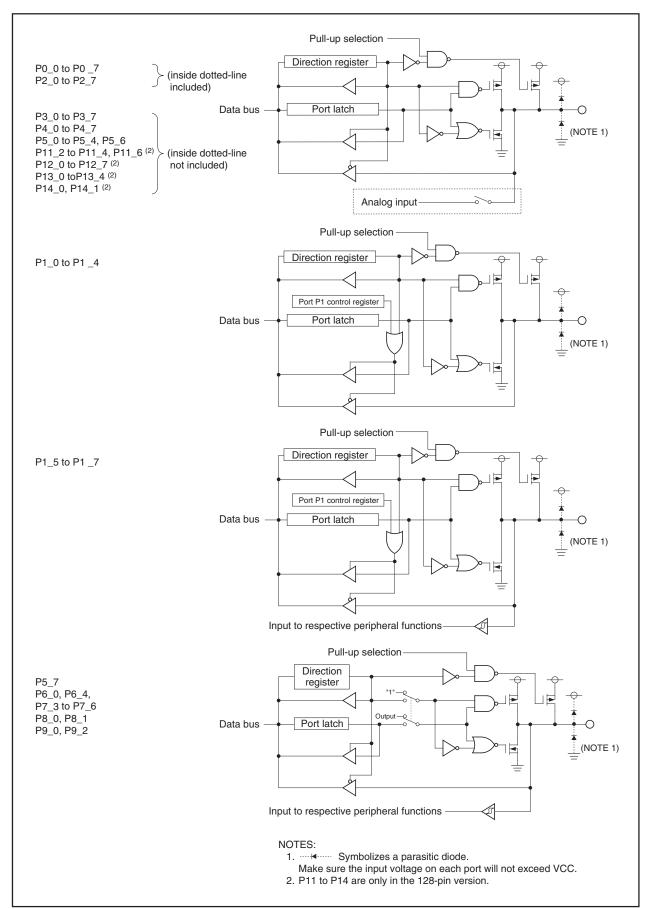


Figure 20.1 I/O Ports (1)

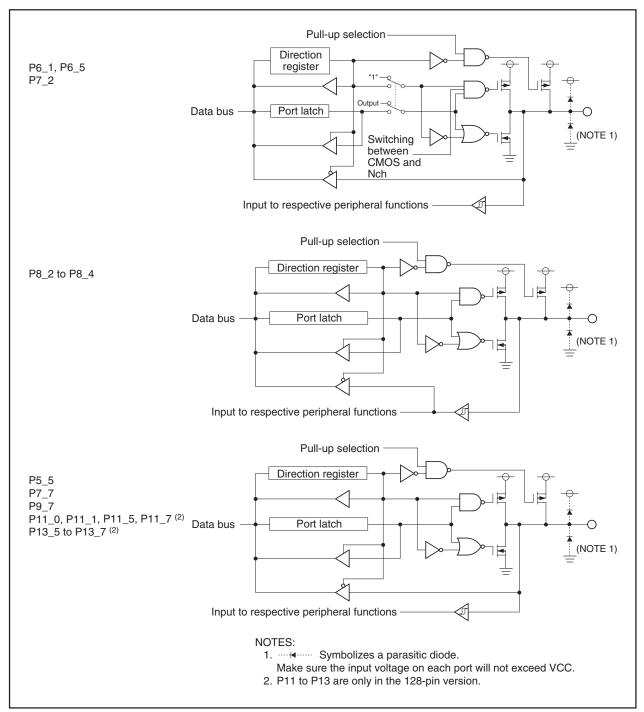


Figure 20.2 I/O Ports (2)

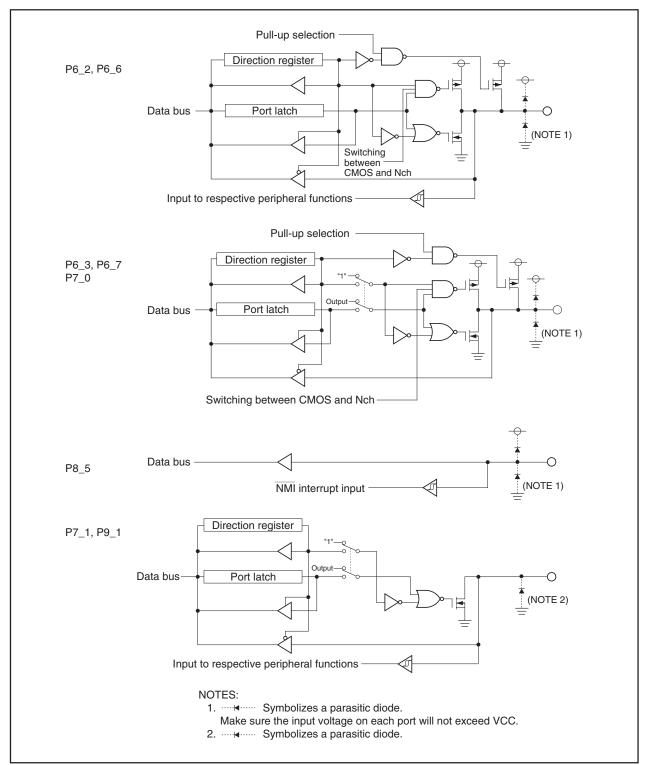


Figure 20.3 I/O Ports (3)

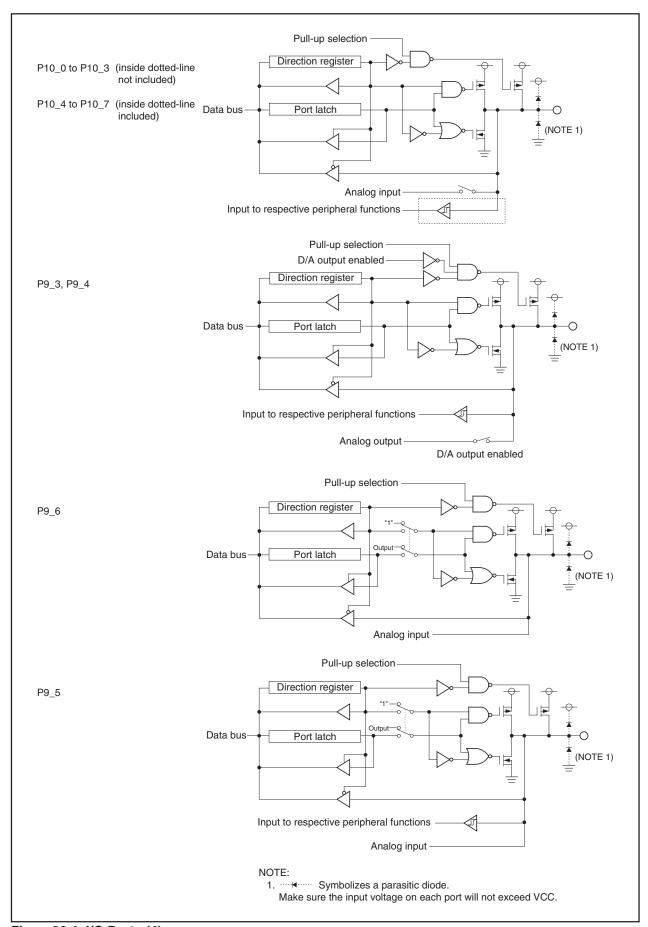


Figure 20.4 I/O Ports (4)

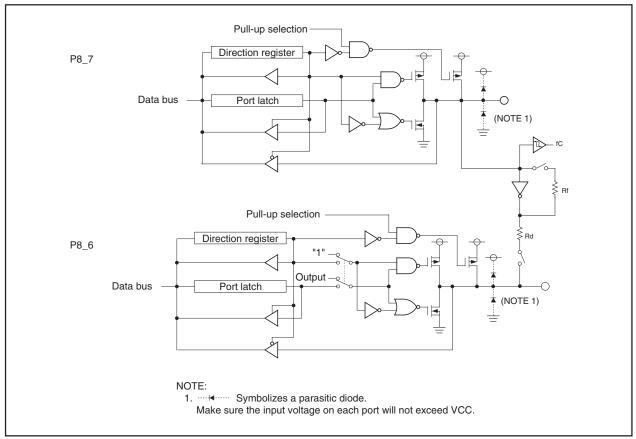


Figure 20.5 I/O Ports (5)

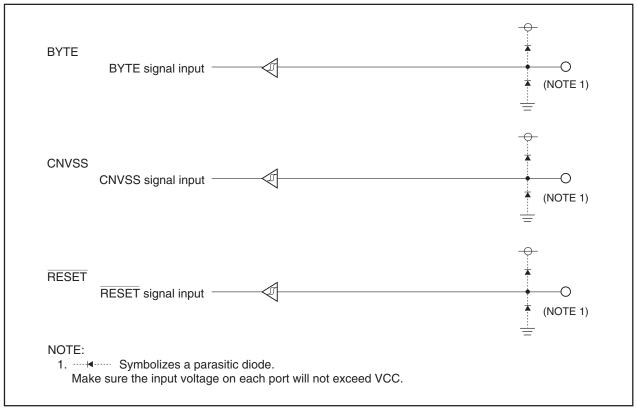
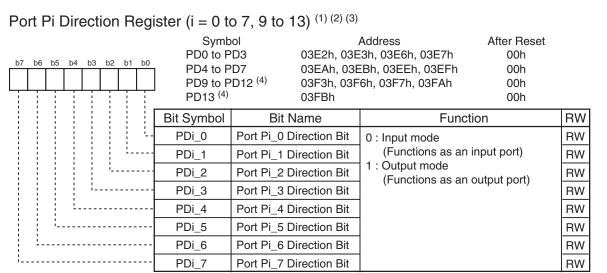



Figure 20.6 I/O Pins

NOTES:

- 1. Make sure the PD7 and PD9 registers are written to by the next instruction after setting the PRC2 bit in the PRCR register to "1" (write enabled).
- During memory expansion and microprocessor modes, the PD register for the pins functioning as bus control
 pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK)
 cannot be modified.
- 3. When using the ports P11 to P13, set the PU37 bit in the PUR3 register to "1" (usable).
- 4. The PD11 to PD13 registers are only in the 128-pin version.

Port P8 Direction Register

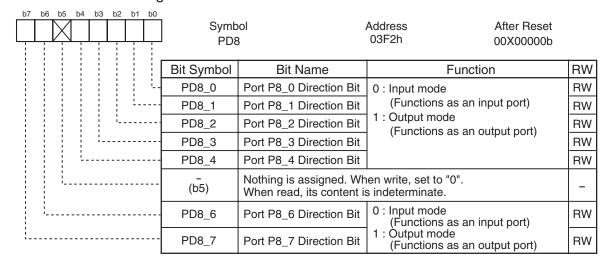
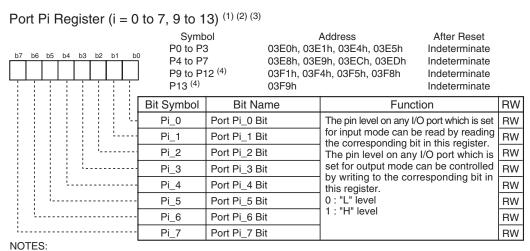
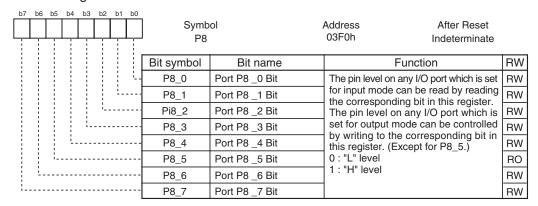
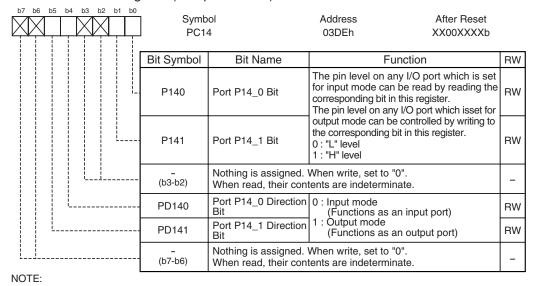
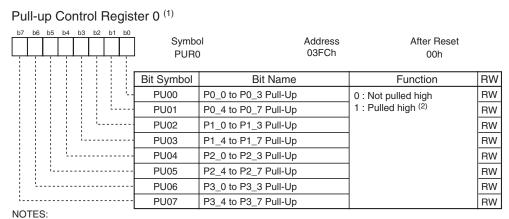




Figure 20.7 PD0 to PD13 Registers



- 1. Since P7_1 and P9_1 are N channel open-drain ports, the data is high-impedance.
- During memory expansion and microprocessor modes, the Pi register for the pins functioning as bus control
 pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK)
 cannot be modified.
- 3. When using the ports P11 to P13, set the PU37 bit in the PUR3 register to "1" (usable). If this bit is set to "0" (unusable), the P11 to P13 registers are set to "00h".
- 4. The P11 to P13 registers are only in the 128-pin version.

Port P8 Register

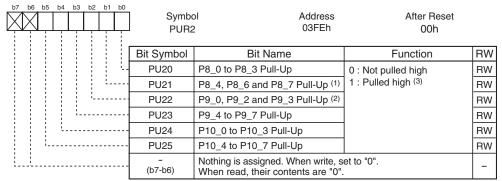


Port P14 Control Register (128-pin version) (1)

1. When using the port P14, set the PU37 bit in the PUR3 register to "1" (usable).

Figure 20.8 P0 to P13 Registers and PC14 Register

- During memory expansion and microprocessor modes, the pins are not pulled high although their corresponding register contents can be modified.
- 2. The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.


Pull-up Control Register 1

b7	b6	b5	b4	b3	b2	b1	b0	Symbo PUR1		After Reset (1) 00000000b 00000010b	
į			į			i		Bit Symbol	Bit Name	Function	RW
							ί.,	PU10	P4_0 to P4_3 Pull-Up (2)	0 : Not pulled high	RW
			-			i.		PU11	P4_4 to P4_7 Pull-Up (3)	1 : Pulled high (5)	RW
					1			PU12	P5_0 to P5_3 Pull-Up (2)		RW
	-			1				PU13	P5_4 to P5_7 Pull-Up (2)		RW
			Ĺ.					PU14	P6_0 to P6_3 Pull-Up		RW
		1						PU15	P6_4 to P6_7 Pull-Up		RW
į	1.							PU16	P7_0, P7_2 and P7_3 Pull-Up (4)		RW
:_	İ							PU17	P7_4 to P7_7 Pull-Up		RW

NOTES:

- The values after hardware reset is as follows:
 - 00000000b when input on CNVSS pin is "L".
 - 00000010b when input on CNVSS pin is "H".
 - The values after software reset, watchdog timer reset and oscillation stop detection reset are as follows: 00000000b when the PM 01 to PM00 bits in the PM0 register are "00b" (single-chip mode).
 - 00000010b when the PM 01 to PM00 bits are "01b" (memory expansion mode) or "11b" (microprocessor mode).
- During memory expansion and microprocessor modes, the pins are not pulled high although their corresponding register contents can be modified.
- 3. If the PM01 to PM00 bits are set to "01b" (memory expansion mode) or "11b" (microprocessor mode) in a program during single-chip mode, the PU11 bit becomes "1".
- 4. The P7_1 pin does not have pull-up.
- 5. The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Pull-up Control Register 2

- 1. The P8_5 pin does not have pull-up.
- 2. The P9_1 pin does not have pull-up.
- 3. The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Figure 20.9 PUR0 Register, PUR1 Register and PUR2 Register

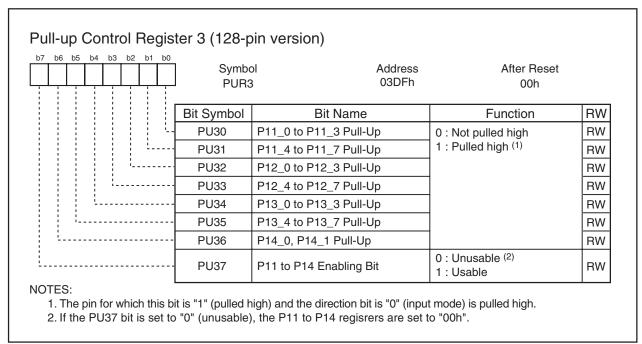


Figure 20.10 PUR3 Register

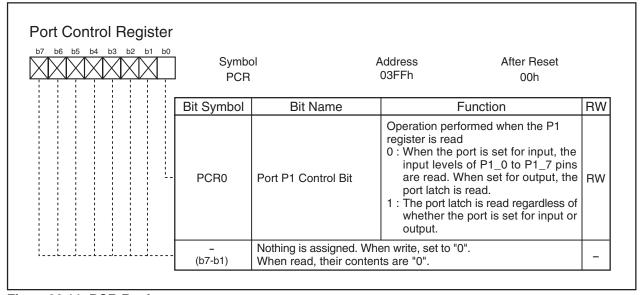


Figure 20.11 PCR Register

Table 20.2 Unassigned Pin Handling in Single-chip Mode

Pin Name	Connection		
Ports P0 to P7, P8_0 to P8_4,	After setting for input mode, connect every pin to VSS via a resistor (pull-down);		
P8_6, P8_7, P9 to P14 (5)	or after setting for output mode, leave these pins open. (1) (2) (3)		
XOUT (4)	Open		
NMI(P8_5)	Connect via resistor to VCC (pull-up)		
AVCC	Connect to VCC		
AVSS, VREF, BYTE	Connect to VSS		

NOTES:

- 1. When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode.
 - Furthermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.
- 2. Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).
- 3. When the ports P7_1 and P9_1 are set for output mode, make sure a low-level signal is output from the pins. The ports P7_1 and P9_1 are N-channel open-drain outputs.
- 4. With external clock input to XIN pin.
- 5. The ports P11 to P14 are only in the 128-pin version. When not using all of the P11 to p14 pins may be left open by setting the PU37 bit in the PUR3 register to "0" (P11 to P14 unusable), without causing any problem.

Table 20.3 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode

Pin Name	Connection			
Ports P0 to P7, P8_0 to P8_4,	After setting for input mode, connect every pin to VSS via a resistor (pull-down);			
P8_6, P8_7, P9 to P14 (7)	or after setting for output mode, leave these pins open. (1) (2) (3) (4)			
P4_5/CS1 to P4_7/CS3	Connect to VCC via a resistor (pulled high) by setting the PD4 register's			
	corresponding direction bit for $\overline{\text{CS}}$ i (i = 1 to 3) to "0" (input mode) and			
	the CSi bit in the CSR register to "0" (chip select disabled).			
BHE, ALE, HLDA, XOUT (5),	Open			
BCLK (6)				
HOLD, RDY, NMI(P8_5)	Connect via resistor to VCC (pull-up)			
AVCC	Connect to VCC			
AVSS, VREF	Connect to VSS			

- 1. When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode.
 - Furthermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.
- 2. Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).
- 3. If the CNVSS pin has the VSS level applied to it, these pins are set for input ports until the processor mode is switched over in a program after reset. For this reason, the voltage levels on these pins become indeterminate, causing the power supply current to increase while they remain set for input ports.
- 4. When the ports P7_1 and P9_1 are set for output mode, make sure a low-level signal is output from the pins. The ports P7_1 and P9_1 are N-channel open-drain outputs.
- 5. With external clock input to XIN pin.
- 6. If the PM07 bit in the PM0 register is set to "1" (BCLK not output), connect this pin to VCC via a resistor (pulled high).
- 7. The ports P11 to P14 are only in the 128-pin version. When not using all of the P11 to p14 pins may be left open by setting the PU37 bit in the PUR3 register to "0" (P11 to P14 unusable), without causing any problem.

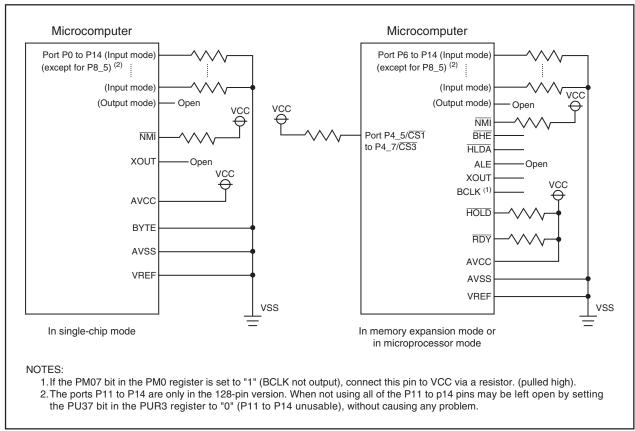


Figure 20.12 Unassigned Pins Handling

21. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, the flash memory can perform in four rewrite mode: CPU rewrite mode, standard serial I/O mode, parallel I/O mode and CAN I/O mode.

Table 21.1 lists the specifications of the flash memory version. See Tables 1.1 and 1.2 Performance outline, for the items not listed in Table 21.1). Table 21.2 shows the outline of flash memory rewrite mode.

Table 21.1 Flash Memory Version Specifications

It	em	Specifications		
Flash Memory Operating Mode		4 modes (CPU rewrite, standard serial I/O, parallel I/O, CAN I/O)		
Erase Block	User ROM Area	See Figure 21.1 Flash Memory Block Diagram		
	Boot ROM Area	1 block (4 Kbytes) ⁽¹⁾		
Program Method		In units of word, in units of byte (2)		
Erase Method		Collective erase, block erase		
Program and Erase Control Method		Program and erase controlled by software command		
Protect Method		Lock bit protects each block		
Number of Commands		8 commands		
Program and Era	se Endurance ⁽³⁾	100 times		
ROM Code Prote	ction	Parallel I/O , standard serial I/O and CAN I/O modes are supported.		

NOTES:

- 1. The boot ROM area contains a standard serial I/O mode and CAN I/O mode rewrite control program which is stored in it when shipped from the factory. This area can only be rewritten in parallel I/O mode.
- 2. Can be programmed in byte units in only parallel I/O mode.
- 3. Definition of program and erase endurance

The programming and erasure times are defined to be per-block erasure times. For example, assume a case where a 4K-byte block A is programmed in 2,048 operations by writing one word at a time and erased thereafter. In this case, the block is reckoned as having been programmed and erased once.

If a product is 100 times of programming and erasure, each block in it can be erased up to 100 times.

Table 21.2 Flash Memory Rewrite Modes Overview

Flash Memory Rewrite Mode	CPU Rewrite Mode (1)	Standard Serial I/O Mode	Parallel I/O Mode	CAN I/O Mode
Function	rewritten when the CPU executes software commands. EW0 mode:	The user ROM area is rewritten using a dedicated serial programmer. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: UART (3)	ROM areas are rewritten using a dedicated parallel programmer.	The user ROM area is rewritten busing a dedicated CAN programmer.
Areas which can be Rewritten	User ROM area	User ROM area	User ROM area Boot ROM area	User ROM area
Operation Mode	Single-chip mode Memory expansion mode (EW0 mode) Boot mode (EW0 mode)	Boot mode	Parallel I/O mode	Boot mode
ROM Programmer	None	Serial programmer	Parallel programmer	CAN programmer

- 1. The PM13 bit remains set to "1" while the FMR01 bit in the FMR0 register = 1 (CPU rewrite mode enabled). The PM13 bit is reverted to its original value by setting the FMR01 bit to "0" (CPU rewrite mode disabled). However, if the PM13 bit is changed during CPU rewrite mode, its changed value is not reflected until after the FMR01 bit is set to "0".
- 2. When in CPU rewrite mode, the PM10 and PM13 bits in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1.
- 3. When using the standard serial I/O mode 2, make sure a main clock input oscillation frequency is set to 5 MHz, 10 MHz or 16 MHz.

21.1 Memory Map

The flash memory contains the user ROM area and a boot ROM area. The user ROM area has space to store the microcomputer operating program in single-chip mode or memory expansion mode and a separate 4-Kbyte space as the block A.

Figure 21.1 shows the block diagram of flash memory.

The user ROM area is divided into several blocks, each of which can individually be protected (locked) against programming or erasure. The user ROM area can be rewritten in all of CPU rewrite, standard serial I/O mode, parallel I/O mode and CAN I/O mode. Block A is enabled for use by setting the PM10 bit in the PM1 register to "1" (block A enabled. CS2 area at addresses 10000h to 26FFFh).

The boot ROM area is located at the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode (refer to **21.1.1 Boot Mode**). A program in the boot ROM area is executed after a hardware reset occurs while an "H" signal is applied to the CNVSS and P5_0 pins and an "L" signal is applied to the P5_5 pin (refer to **21.1.1 Boot Mode**). A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVSS pin. However, the boot ROM area cannot be read.

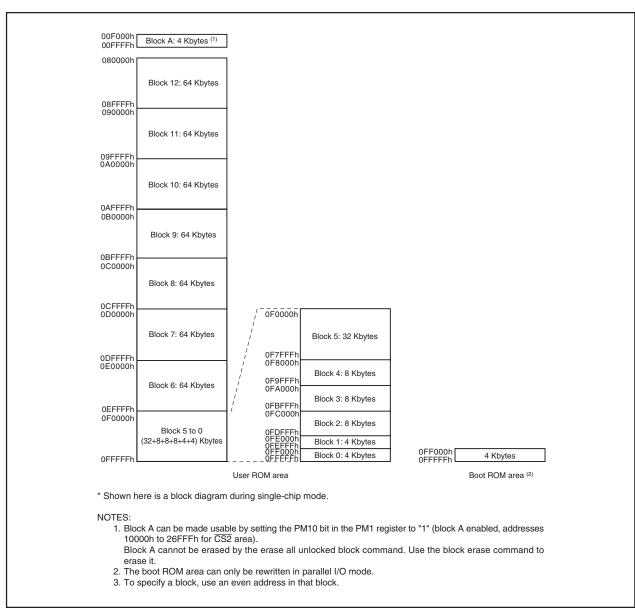


Figure 21.1 Flash Memory Block Diagram

M16C/6N Group (M16C/6NL, M16C/6NN)

21.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset occurs while an "H" signal is applied to the CNVSS and P5_0 pins and an "L" signal is applied to the P5_5 pin. A program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to the boot ROM area or the user ROM area.

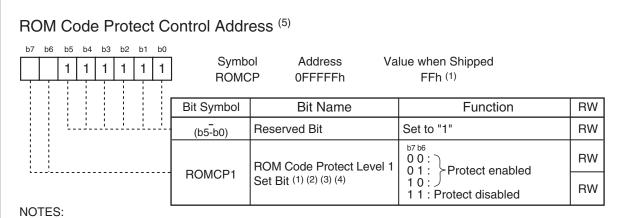
The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erase-write mode (EW0 mode) is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

21.2 Functions to Prevent Flash Memory from Rewriting

The flash memory has a built-in ROM code protect function for parallel I/O mode and a built-in ID code check function for standard serial I/O mode and CAN I/O mode to prevent the flash memory from reading or rewriting.

21.2.1 ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten during parallel I/O mode. Figure 21.2 shows the ROMCP register. The ROMCP register is located in the user ROM area. The ROM code protect function is enabled when the ROMCR bits are set to other than "11b". In this case, set the bit 5 to bit 0 to "111111b".


When exiting ROM code protect, erase the block including the ROMCP register by the CPU rewrite mode or the standard serial I/O mode or CAN I/O mode.

21.2.2 ID Code Check Function

Use the ID code check function in standard serial I/O mode and CAN I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFFF", ID codes are not compared, allowing all commands to be accepted. The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDFh, 0FFFE3h, 0FFFE5h, 0FFFF5h, and 0FFFFBh. The flash memory must have a program with the ID codes set in these addresses.

Figure 21.3 shows the ID code store addresses.

- 1. The ROMCP address is set to "FFh" when a block, including the ROMCP address, is erased.
- 2. When the ROM code protection is active by the ROMCP1 bit setting, the flash memory is protected against reading or rewriting in parallel I/O mode.
- 3. Set the bit 5 to bit 0 to "1111111b" when the ROMCP1 bit is set to a value other than "11b".

 If the bit 5 to bit 0 are set to values other than "111111b", the ROM code protection may not become active by setting the ROMCP1 bit to a value other than "11b".
- 4. To make the ROM code protection inactive, erase a block including the ROMCP address in CPU rewrite mode, standard serial I/O mode or CAN I/O mode.
- 5. When a value of the ROMCPaddress is "00h" or "FFh", the ROM code protect function is disabled.

Figure 21.2 ROMCP Register

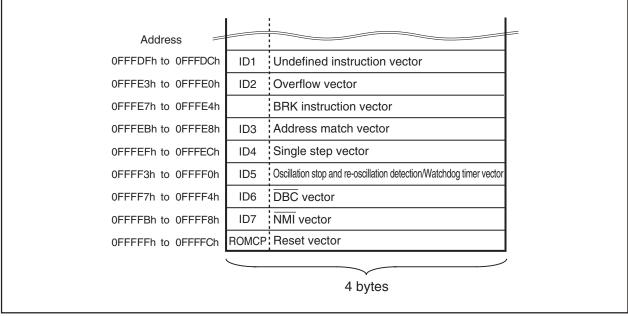


Figure 21.3 Address for ID Code Stored

21.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with the microcomputer is mounted on a board without using a parallel, serial or CAN programmer.

In CPU rewrite mode, only the user ROM area shown in Figure 21.1 can be rewritten. The boot ROM area cannot be rewritten. Program and the block erase command are executed only in the user ROM area. Erase-write 0 (EW0) mode and erase-write 1 (EW1) mode are provided as CPU rewrite mode.

Table 21.3 lists the differences between EW0 and EW1 modes.

Table 21.3 EW0 Mode and EW1 Mode

Item	EW0 Mode	EW1 Mode
Operation Mode	Single-chip mode	Single-chip mode
	Memory expansion mode	
	Boot mode	
Space where Rewrite	User ROM area	User ROM area
Control Program can be	Boot ROM area	
Placed		
Space where Rewrite	The rewrite control program must be	The rewrite control program can be
Control Program can be	transferred to any space other than the	executed in the user ROM area
Executed	flash memory (e.g., RAM) before being	
	executed (2)	
Space which can be	User ROM area	User ROM area
Rewritten		However, this excludes blocks with the
		rewrite control program
Software Command	None	Program and block erase commands
Restriction		cannot be executed in a block having
		the rewrite control program.
		Erase all unlocked block command
		cannot be executed when the lock bit in
		a block having the rewrite control program
		is set to "1" (unlocked) or when the
		FMR02 bit in the FMR0 register is set
		to "1" (lock bit disabled).
		Read status register command cannot
		be used
Modes after Program or	Read status register mode	Read array mode
Erasing		
CPU Status during Auto	Operating	Maintains hold state (I/O ports maintains
Write and Auto Erase		the state before the command was
		executed) (1)
Flash Memory Status	•Read the FMR00, FMR06 and FMR07	Read the FMR00, FMR06 and FMR07
Detection	bits in the FMR0 register by program	bits in the FMR0 register by program
	•Execute the read status register	
	command to read the SR7, SR5, and	

^{2.} When in CPU rewrite mode, the PM10 and PM13 bits in the PM1 register are set to "1". The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1.

^{1.} Do not generate an interrupts (except NMI interrupt) and DMA transfer.

21.3.1 EW0 Mode

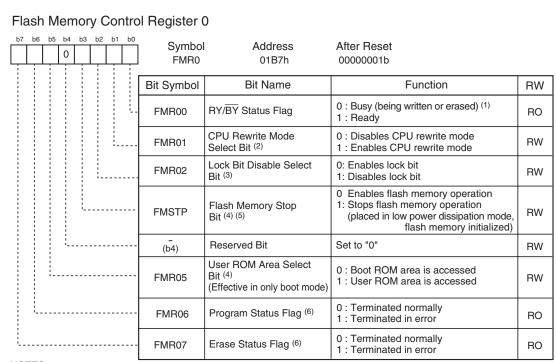
The microcomputer enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled) and is ready to accept commands. EW0 mode is selected by setting the FMR11 bit in the FMR1 register to "0". To set the FMR01 bit to "1", set to "1" after first writing "0".

The software commands control programming and erasing. The FMR0 register or the status register indicates whether a program or erase operation is completed as expected or not.

21.3.2 EW1 Mode

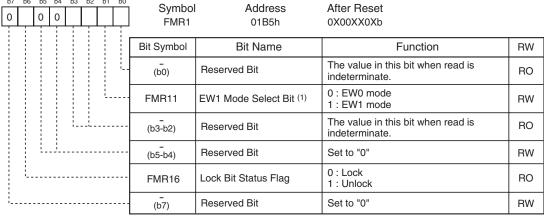
EW1 mode is selected by setting FMR11 bit to "1" (by writing "0" and then "1" in succession) after setting the FMR01 bit to "1" (by writing "0" and then "1" in succession). (Both bits must be set to "0" first before setting to "1".)

The FMR0 register indicates whether or not a program or erase operation has been completed as expected. The status register cannot be read in EW1 mode.


When an erase/program operation is initiated the CPU halts all program execution until the operation is completed or erase-suspend is requested.

Under development

21.3.3 FMR0, FMR1 Registers


Figure 21.4 shows FMR0 and FMR1 registers.

NOTES:

- 1. This status includes writing or reading with the lock bit program or read lock bit status command.
- 2. To set this bit to "1", write "0" and then "1" in succession. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".
 - Write to this bit when the $\overline{\text{NMI}}$ pin is in the high state. Also, while in EW0 mode, write to this bit from a program in other than the flash memory.
 - To set this bit to "0", in a read array mode.
- 3. To set this bit to "1", write "0" and then "1" in succession when the FMR01 bit = 1. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".
- 4. Write to this bit from a program in other than the flash memory.
- 5. Effective when the FMR01 bit = 1 (CPU rewrite mode). If the FMR01 bit = 0, although the FMSTP bit can be set to "1" by writing "1" in a program, the flash memory is neither placed in lo power dissipation state nor initialized.
- 6. This bit is set to "0" by executing the clear status command.

Flash Memory Control Register 1

NOTE:

1. To set this bit to "1", write "0" and then "1" in succession when the FMR01 bit in the FMR0 register = 1. Make sure no interrupts or no DMA transfers will occur before writing "1" after writing "0".

Write to this bit when the NMI pin is in the high state.

The FMR01 and FMR11 bits both are set to "0" by setting the FMR01 bit to "0".

Figure 21.4 FMR0 Register and FMR1 Register

21.3.3.1 FMR00 Bit

This bit indicates the flash memory operating status. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

21.3.3.2 FMR01 Bit

The microcomputer can accept commands when the FMR01 bit is set to "1" (CPU rewrite mode). Set the FMR05 bit to "1" (user ROM area access) as well if in boot mode.

21.3.3.3 FMR02 Bit

The lock bit is disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **21.3.6 Data Protect Function**.) The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase or erase all unlocked block command is executed when the FMR02 bit is set to "1", the lock bit status changes "0" (locked) to "1" (unlocked) after command execution is completed.

21.3.3.4 FMSTP Bit

This bit resets the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to "1". Set the FMSTP bit by program in a space other than the flash memory.

Set the FMSTP bit to "1" if one of the followings occurs:

- A flash memory access error occurs while erasing or programming in EW0 mode (FMR00 bit does not switch back to "1" (ready))
- · Low power dissipation mode or on-chip oscillator low power dissipation mode is entered

Use the following the procedure to change the FMSTP bit setting.

- (1) Set the FMSTP bit to "1"
- (2) Set tps (the wait time to stabilize flash memory circuit)
- (3) Set the FMSTP bit to "0"
- (4) Set tps (the wait time to stabilize flash memory circuit)

Figure 21.7 shows a flow chart illustrating how to start and stop the flash memory processing before and after low power dissipation mode or on-chip oscillator low power dissipation mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

21.3.3.5 FMR05 Bit

This bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area.

21.3.3.6 FMR06 Bit

This is a read-only bit indicating an auto program operation state. The FMR06 bit is set to "1" when a program error occurs; otherwise, it is set to "0". Refer to **21.3.8 Full Status Check**.

21.3.3.7 FMR07 Bit

This is a read-only bit indicating the auto erase operation status. The FMR07 bit is set to "1" when an erase error occurs; otherwise, it is set to "0". For details, refer to **21.3.8 Full Status Check**.

21.3.3.8 FMR11 Bit

EW0 mode is entered by setting the FMR11 bit to "0" (EW0 mode).

EW1 mode is entered by setting the FMR11 bit to "1" (EW1 mode).

21.3.3.9 FMR16 Bit

This is a read-only bit indicating the execution result of the read lock bit status command. When the block, where the read lock bit status command is executed, is locked, the FMR16 bit is set to "0". When the block, where the read lock bit status command is executed, is unlocked, the FMR16 bit is set to "1".

Figure 21.5 shows how to enter and exit EW0 mode. Figure 21.6 show how to enter and exit EW1 mode.

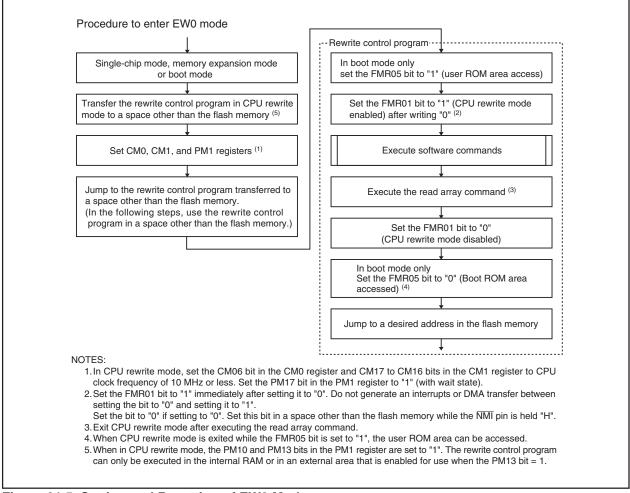


Figure 21.5 Setting and Resetting of EW0 Mode

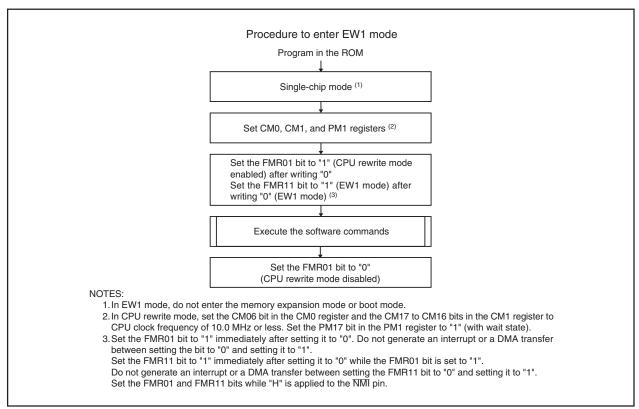


Figure 21.6 Setting and Resetting of EW1 Mode

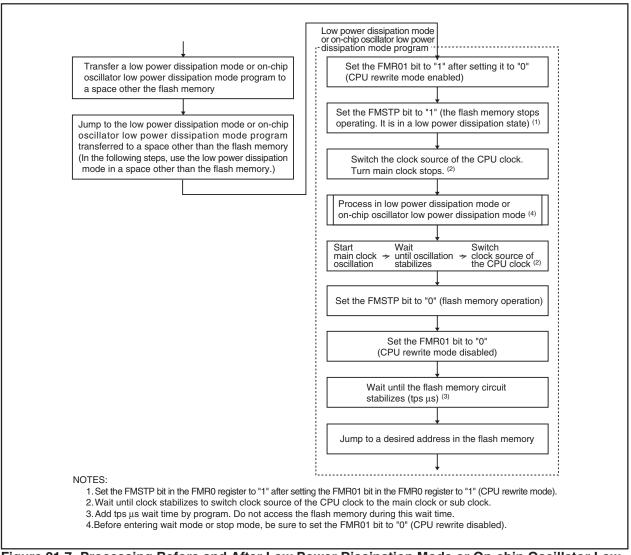


Figure 21.7 Processing Before and After Low Power Dissipation Mode or On-chip Oscillator Low Power Dissipation Mode

Under development

21.3.4 Precautions on CPU Rewrite Mode

21.3.4.1 Operating Speed

Set the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register to clock frequency of 10 MHz or less before entering CPU rewrite mode (EW0 or EW1 mode). Also, set the PM17 bit in the PM1 register to "1" (with wait state).

21.3.4.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

21.3.4.3 Interrupts (EW0 Mode)

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt request is generated. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt request is generated. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

21.3.4.4 Interrupts (EW1 Mode)

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when the interrupt request is generated. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt request is generated. Execute the rewrite program again after exiting the interrupt service routine.

21.3.4.5 How to Access

To set the FMR01, FMR02 or FMR11 bit to "1", write "1" after first setting the bit to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while an "H" signal is applied to the $\overline{\text{NMI}}$ pin.

21.3.4.6 Rewriting in User ROM Area (EW0 Mode)

The supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode or CAN I/O mode.

21.3.4.7 Rewriting in User ROM Area (EW1 Mode)

Avoid rewriting any block in which the rewrite control program is stored.

21.3.4.8 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (auto programming or auto erasing).

21.3.4.9 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

21.3.4.10 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

21.3.4.11 Stop Mode

When the microcomputer enters stop mode, execute the instruction which sets the CM10 bit to "1" (stop mode) after setting the FMR01 bit to "0" (CPU rewrite mode disabled) and disabling the DMA transfer.

21.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- · Lock bit program
- Read lock bit status

21.3.5 Software Commands

Software commands are described below. The command code and data must be read and written in 16-bit unit, to and from even addresses in the user ROM area. When writing command code, the high-order 8 bits (D15 to D8) are ignored.

Table 21.4 lists the software commands.

Table 21.4 Software Commands

	First Bus Cycle			Second Bus Cycle		
Software Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)
Read Array	Write	×	xxFFh	-	-	-
Read Status Register	Write	×	xx70h	Read	×	SRD
Clear Status Register	Write	×	xx50h	-	-	-
Program	Write	WA	xx40h	Write	WA	WD
Block Erase	Write	×	xx20h	Write	ВА	xxD0h
Erase All Unlocked Block (1)	Write	×	xxA7h	Write	×	xxD0h
Lock Bit Program	Write	ВА	xx77h	Write	ВА	xxD0h
Read Lock Bit Status	Write	×	xx71h	Write	ВА	xxD0h

SRD:data in SRD register (D7 to D0)

WA: Address to be written (The address specified in the first bus cycle is the same even address as the address specified in the second bus cycle.)

WD: 16-bit write data

BA: Highest-order block address (must be an even address)

X: Any even address in the user ROM area

xx: High-order 8 bits of command code (ignored)

NOTE

1. It is only blocks 0 to 12 that can be erased by the erase all unlocked block command.

Block A cannot be erased. The block erase command must be used to erase the block A.

21.3.5.1 Read Array Command (FFh)

The read array command reads the flash memory.

By writing command code "xxFFh" in the first bus cycle, read array mode is entered. Content of a specified address can be read in 16-bit unit after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

21.3.5.2 Read Status Register Command (70h)

The read status register command reads the status register (refer to 21.3.7 Status Register (SRD Register) for detail).

By writing command code "xx70h" in the first bus cycle, the status register can be read in the second bus cycle. Read an even address in the user ROM area.

Do not execute this command in EW1 mode.

21.3.5.3 Clear Status Register Command (50h)

The clear status register command clears the status register.

By writing "xx50h" in the first bus cycle, the FMR07, FMR06 bits in the FMR0 register are set to "00b" and the SR5, SR4 bits in the status register are set to "00b".

21.3.5.4 Program Command (40h)

The program command writes 2-byte data to the flash memory.

By writing "xx40h" in the first bus cycle and data to the write address in the second bus cycle, an auto program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether an auto program operation has been completed. The FMR00 bit is set to "0" (busy) during auto program and to "1" (ready) when an auto program operation is completed.

After the completion of an auto program operation, the FMR06 bit in the FMR0 register indicates whether or not the auto program operation has been completed as expected. (Refer to **21.3.8 Full Status Check.**)

An address that is already written cannot be altered or rewritten.

Figure 21.8 shows a flow chart of the program command programming.

The lock bit protects each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function.**)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as an auto program operation starts. The status register can be read. The SR7 bit in the status register is set to "0" at the same time an auto program operation starts. It is set to "1" when auto program operation is completed. The microcomputer remains in read status register mode until the read array command is written. After completion of an auto program operation, the status register indicates whether or not the auto program operation has been completed as expected.

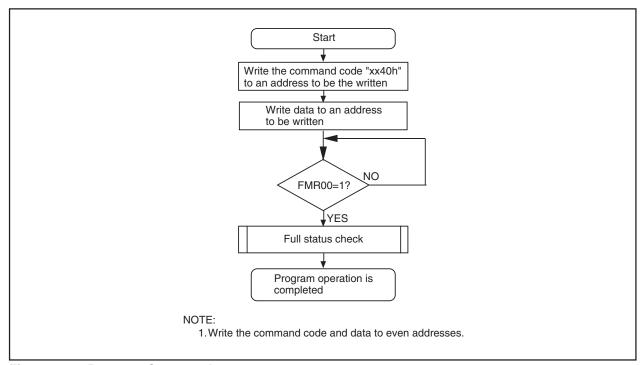


Figure 21.8 Program Command

M16C/6N Group (M16C/6NL, M16C/6NN)

21.3.5.5 Block Erase Command

The block erase command erases each block.

By writing "xx20h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, an auto erase operation (erase and verify) will start in the specified block.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed.

The FMR00 bit is set to "0" (busy) during auto erase and to "1" (ready) when the auto erase operation is completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected. (Refer to **21.3.8 Full Status Check**.) Figure 21.9 shows a flow chart of the block erase command programming.

The lock bit protects each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function**.)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as an auto erase operation starts. The status register can be read. The SR7 bit in the status register is set to "0" at the same time an auto erase operation starts. It is set to "1" when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written. Also execute the clear status register command and block erase command at least 3 times until an erase error is not generated when an erase error is generated.

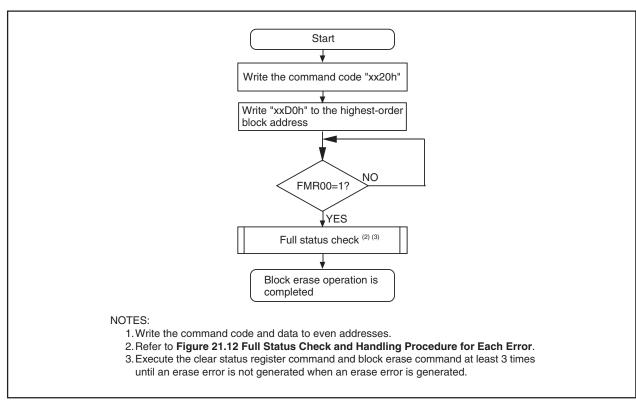


Figure 21.9 Block Erase Command

21.3.5.6 Erase All Unlocked Block

The erase all unlocked block command erases all blocks except the block A.

By writing "xxA7h" in the first bus cycle and "xxD0h" in the second bus cycle, an auto erase (erase and verify) operation will run continuously in all blocks except the block A.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected.

The lock bit can protect each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function**.)

In EW1 mode, do not execute this command when the lock bit for any block storing the rewrite control program is set to "1" (unlocked) or when the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled).

In EW0 mode, the microcomputer enters read status register mode as soon as an auto erase operation starts. The status register can be read. The SR7 bit in the status register is set to "0" (busy) at the same time an auto erase operation starts. It is set to "1" (ready) when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

Only blocks 0 to 12 can be erased by the erase all unlocked block command. The block A cannot be erased. Use the block erase command to erase the block A.

21.3.5.7 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing "xx77h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

Figure 21.10 shows a flow chart of the lock bit program command programming. Execute read lock bit status command to read lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation is completed.

Refer to 21.3.6 Data Protect Function for details on lock bit functions and how to set it to "1" (unlocked).

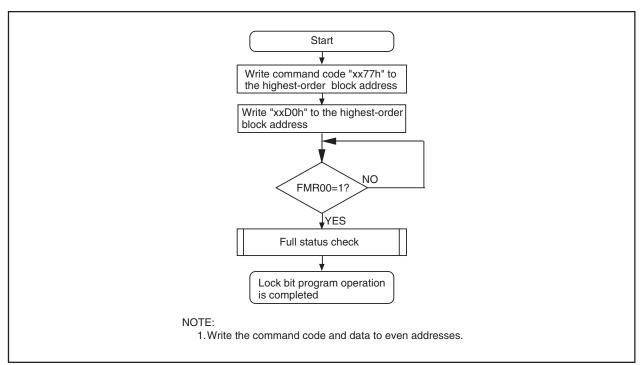


Figure 21.10 Lock Bit Program Command

21.3.5.8 Read Lock Bit Status Command (71h)

The read lock bit status command reads the lock bit state of a specified block.

By writing "xx71h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on whether or not the lock bit of a specified block is locked. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to "1" (ready).

Figure 21.11 shows a flow chart of the read lock bit status command programming.

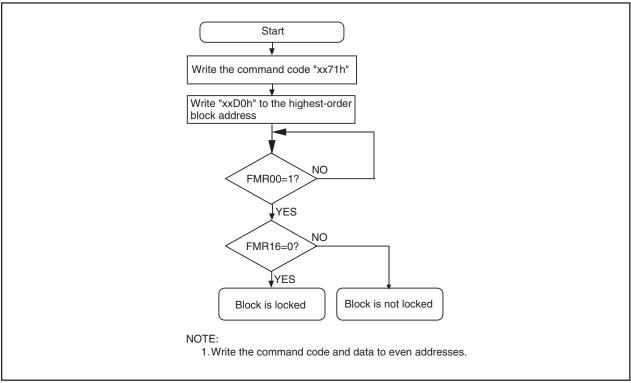


Figure 21.11 Read Lock Bit Status Command

21.3.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit in the FMR0 register to "0" (lock bit enabled). The lock bit allows each block to be individually protected (locked) against program and erase. This helps prevent data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands.

The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block are set to "1" after an erase operation is completed.

Refer to 21.3.5 Software Commands for details on each command.

21.3.7 Status Register (SRD Register)

The status register indicates the flash memory operation state and whether or not an erase or program operation is completed as expected. The FMR00, FMR06 and FMR07 bits in the FMR0 register indicate status register states.

Table 21.5 shows the status register.

In EW0 mode, the status register can be read when the followings occur.

- Any even address in the user ROM area is read after writing the read status register command
- Any even address in the user ROM area is read from when the program, block erase, erase all unlocked block, or lock bit program command is executed until when the read array command is executed.

21.3.7.1 Sequencer Status (SR7 and FMR00 Bits)

The sequence status indicates the flash memory operation state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

21.3.7.2 Erase Status (SR5 and FMR07 Bits)

Refer to 21.3.8 Full Status Check.

21.3.7.3 Program Status (SR4 and FMR06 Bits)

Refer to 21.3.8 Full Status Check.

Table 21.5 Status Register

Bits in Status	Bits in FMR0	Ctatus Name	Cont	ents	Value after
Register	Register	Status Name	"0"	"1"	Reset
SR0 (D0)	-	Reserved	-	-	-
SR1 (D1)	-	Reserved	-	-	-
SR2 (D2)	-	Reserved	-	-	-
SR3 (D3)	-	Reserved	-	-	-
SR4 (D4)	FMR06	Program status	Terminated normally	Terminated in error	0
SR5 (D5)	FMR07	Erase status	Terminated normally	Terminated in error	0
SR6 (D6)	-	Reserved	-	-	-
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1

D0 to D7: These data bus are read when the read status register command is executed.

NOTE:

1. The FMR06 bit (SR4) and FMR07 bit (SR5) are set to "0" by executing the clear status register command. When the FMR06 bit (SR4) or FMR07 bit (SR5) is set to "1", the program, block erase, erase all unlocked block, and lock bit program commands are not accepted.

21.3.8 Full Status Check

If an error occurs when a program or erase operation is completed, the FMR06, FMR07 bits in the FMR0 register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by checking these bits (full status check).

Table 21.6 lists errors and FMR0 register state. Figure 21.12 shows a flow chart of the full status check and handling procedure for each error.

Table 21.6 Errors and FMR0 Register Status

FRM00 Register (Status Register) Status		Error	Error Occurrence Conditions
FMR07 bit (SR5)	FMR06 bit (SR4)		
1	1	Command	Command is written incorrectly
		Sequence	• A value other than "xxD0h" or "xxFFh" is written in the second
		error	bus cycle of the lock bit program, block erase or erase all
			unlocked block command (1)
1	0	Erase error	• The block erase command is executed on a locked block (2)
			•The block erase or erase all unlocked block command is
			executed on an unlock block and auto erase operation is not
			completed as expected
0	1	Program error	• The program command is executed on locked blocks (2)
			The program command is executed on unlocked blocks but
			program operation is not completed as expected
			• The lock bit program command is executed but program
			operation is not completed as expected

- 1. The flash memory enters read array mode by writing command code "xxFFh" in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.
- 2. When the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled), no error occurs even under the conditions above.

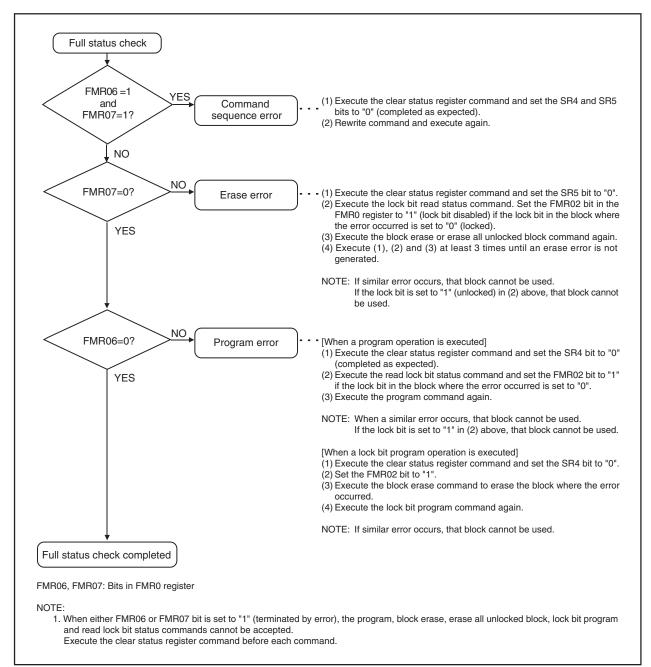


Figure 21.12 Full Status Check and Handling Procedure for Each Error

21.4 Standard Serial I/O Mode

M16C/6N Group (M16C/6NL, M16C/6NN)

In standard serial I/O mode, the serial programmer supporting the M16C/6N Group (M16C/6NL, M16C/6NN) can be used to rewrite the flash memory user ROM area in the microcomputer mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 21.7 lists pin functions for standard serial I/O mode. Figures 21.13 and 21.14 show pin connections for standard serial I/O mode.

21.4.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to 21.2 Functions to Prevent Flash Memory from Rewriting.)

Table 21.7 Pin Functions for Standard Serial I/O Mode

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power supply		Apply the Flash Program, Erase Voltage to VCC1 pin and VCC2 to
	input		VCC2 pin. The VCC apply condition is that VCC2 = VCC1.
			Apply 0 V to VSS pin.
CNVSS	CNVSS	I	Connect to VCC1 pin.
RESET	Reset input	ı	Reset input pin. While RESET pin is "L" level, input 20 cycles or
			longer clock to XIN pin.
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and
XOUT	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN
			pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog power		Connect AVCC to VCC1 and AVSS to VSS, respectively.
	supply input		
VREF	Reference	I	Enter the reference voltage for A/D and D/A converters from this
	voltage input		pin.
P0_0 to P0_7	Input port P0	I	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input port P2	I	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input port P4	I	Input "H" or "L" level signal or open.
P5_0	CE input	I	Input "H" level signal.
P5_1 to P5_4,	Input port P5	I	Input "H" or "L" level signal or open.
P5_6, P5_7			
P5_5	EPM input	I	Input "L" level signal.
P6_0 to P6_3	Input port P6	I	Input "H" or "L" level signal or open.
P6_4/RTS1	BUSY output	0	Standard serial I/O mode 1: BUSY signal output pin
			Standard serial I/O mode 2: Monitors the boot program operation
			check signal output pin.
P6_5/CLK1	SCLK input	I	Standard serial I/O mode 1: Serial clock input pin.
			Standard serial I/O mode 2: Input "L".
P6_6/RXD1	RXD input	ı	Serial data input pin
P6_7/TXD1	TXD output	0	Serial data output pin (1)
P7_0 to P7_7	Input port P7	I	Input "H" or "L" level signal or open.
P8_0 to P8_3,	Input port P8	I	Input "H" or "L" level signal or open.
P8_6, P8_7			
P8_4	P8_4 input	I	Input "L" level signal. (2)
P8_5/NMI	NMI input	I	Connect this pin to VCC1.
P9_0 to P9_4, P9_7	Input port P9	I	Input "H" or "L" level signal or open.
P9_5/CRX0	CRX input	I	Input "H" or "L" level signal or connect to a CAN transceiver.
P9_6/CTX0	CTX output	0	Input "H" level signal, open or connect to a CAN transceiver.
P10_0 to P10_7	Input port P10	I	Input "H" or "L" level signal or open.
P11_0 to P11_7 (2)	Input port P11	I	Input "H" or "L" level signal or open.
P12_0 to P12_7 (2)	Input port P12	I	Input "H" or "L" level signal or open.
P13_0 to P13_7 (2)	Input port P13	I	Input "H" or "L" level signal or open.
P14_0, P14_1 (2)	Input port P14	I	Input "H" or "L" level signal or open.

- 1. When using the standard serial I/O mode, It is necessary to input "H" to the TXD1(P6_7) pin while the RESET pin is "L". Therefore, the internal pull-up is enabled for the TXD1(P6_7) pin while the RESET pin is "L".
- 2. When using the standard serial I/O mode, the P0_0 to P0_7, P1_0 to P1_7 pins may become indeterminate while the P8_4 pin is "H" and the RESET pin is "L". If this causes a problem, apply "L" to the P8_4 pin.
- 3. The pins P11 to P14 are only in the 128-pin version.

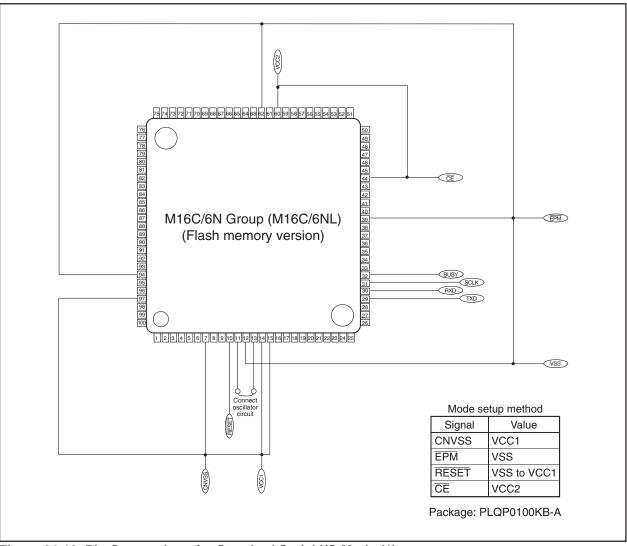


Figure 21.13 Pin Connections for Standard Serial I/O Mode (1)

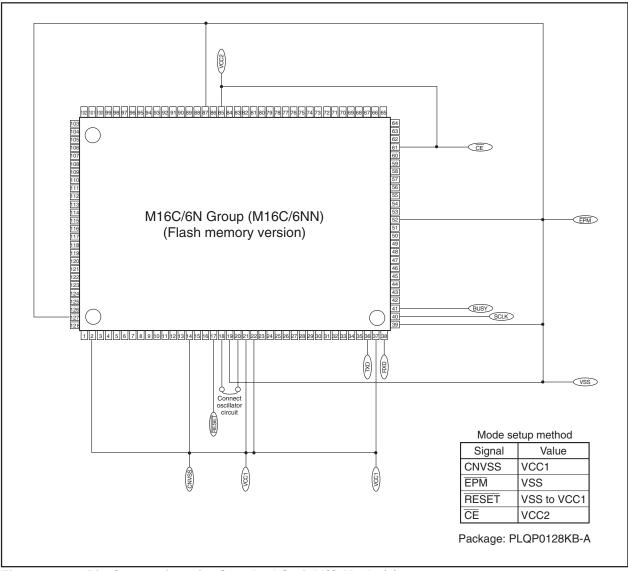


Figure 21.14 Pin Connections for Standard Serial I/O Mode (2)

21.4.2 Example of Circuit Application in Standard Serial I/O Mode

Figures 21.15 and 21.16 show example of circuit application in standard serial I/O mode 1 and mode 2, respectively. Refer to the user's manual of your serial programmer to handle pins controlled by a serial programmer.

Note that when using the standard serial I/O mode 2, make sure a main clock input oscillation frequency is set to 5 MHz, 10 MHz or 16 MHz.

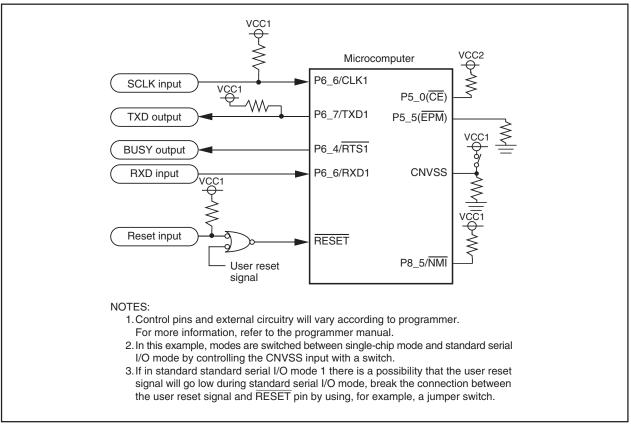


Figure 21.15 Circuit Application in Standard Serial I/O Mode 1

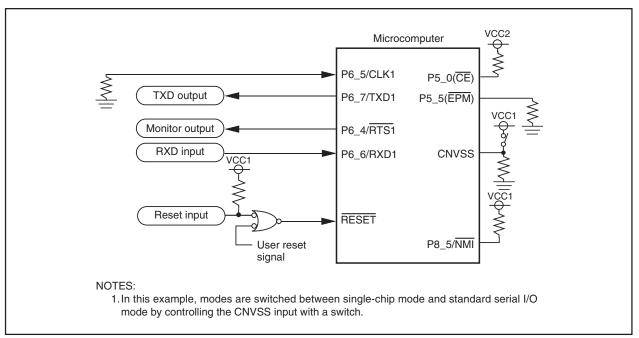


Figure 21.16 Circuit Application in Standard Serial I/O Mode 2

M16C/6N Group (M16C/6NL, M16C/6NN)

21.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area can be rewritten by a parallel programmer supporting the M16C/6N Group (M16C/6NL, M16C/6NN). Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

21.5.1 User ROM and Boot ROM Areas

An erase block operation in the boot ROM area is applied to only one 4-Kbyte block. The rewrite control program in standard serial I/O and CAN I/O modes are written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using the serial programmer.

In parallel I/O mode, the boot ROM area is located in addresses 0FF000h to 0FFFFh. Rewrite this address range only if rewriting the boot ROM area. (Do not access addresses other than addresses 0FF000h to 0FFFFh.)

21.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to 21.2 Functions to Prevent Flash Memory from Rewriting.)

21.6 CAN I/O Mode

In CAN I/O mode, the CAN programmer supporting the M16C/6N Group (M16C/6NL, M16C/6NN) can be used to rewrite the flash memory user ROM area in the microcomputer mounted on a board. For more information about the CAN programmer, contact your CAN programmer manufacturer. Refer to the user's manual included with your CAN programmer for instructions.

Table 21.8 lists pin functions for CAN I/O mode. Figures 21.17 and 21.18 show pin connections for CAN I/O mode.

21.6.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the CAN programmer matches those written in the flash memory. (Refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.)

Table 21.8 Pin Functions for CAN I/O Mode

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power supply		Apply the Flash Program, Erase Voltage to VCC1 pin and VCC2 to
	input		VCC2 pin. The VCC apply condition is that VCC2 = VCC1. Apply 0
			V to VSS pin.
CNVSS	CNVSS	ı	Connect to VCC1 pin.
RESET	Reset input	ı	Reset input pin. While RESET pin is "L" level, input 20 cycles or
			longer clock to XIN pin.
XIN	Clock input	ı	Connect a ceramic resonator or crystal oscillator between XIN and
XOUT	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN
			pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog power		Connect AVCC to VCC1 and AVSS to VSS, respectively.
	supply input		
VREF	Reference	ı	Enter the reference voltage for A/D and D/A converters from this
	voltage input		pin.
P0_0 to P0_7	Input port P0	ı	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input port P1	ı	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input port P2	ı	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input port P3	ı	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input port P4	ı	Input "H" or "L" level signal or open.
P5_0	CE input	ı	Input "H" level signal.
P5_1 to P5_4,	Input port P5	ı	Input "H" or "L" level signal or open.
P5_6, P5_7			
P5_5	EPM input	ı	Input "L" level signal.
P6_0 to P6_4, P6_6	Input port P6	ı	Input "H" or "L" level signal or open.
P6_5/CLK1	SCLK input	ı	Input "L" level signal.
P6_7/TXD1	TXD output	0	Input "H" level signal.
P7_0 to P7_7	Input port P7	ı	Input "H" or "L" level signal or open.
P8_0 to P8_3,	Input port P8	ı	Input "H" or "L" level signal or open.
P8_6, P8_7			
P8_4	P8_4 Input	ı	Input "L" level signal. (1)
P8_5/NMI	NMI input	ı	Connect this pin to VCC1.
P9_0 to P9_4, P9_7	Input port P9	ı	Input "H" or "L" level signal or open.
P9_5/CRX0	CRX input	ı	Connect to a CAN transceiver.
P9_6/CTX0	CTX output	0	Connect to a CAN transceiver.
P10_0 to P10_7	Input port P10	I	Input "H" or "L" level signal or open.
P11_0 to P11_7 (2)	Input port P11	ı	Input "H" or "L" level signal or open.
P12_0 to P12_7 (2)	Input port P12	ı	Input "H" or "L" level signal or open.
P13_0 to P13_7 (2)	Input port P13	ı	Input "H" or "L" level signal or open.
P14_0, P14_1 (2)	Input port P14	ı	Input "H" or "L" level signal or open.
NOTES:			· · · · · · · · · · · · · · · · · · ·

^{2.} The pins P11 to P14 are only in the 128-pin version.

^{1.} When using CAN I/O mode, the P0_0 to P0_7, P1_0 to P1_7 pins may become indeterminate while the P8_4 pin is "H" and the RESET pin is "L". If this causes a problem, apply "L" to the P8_4 pin.

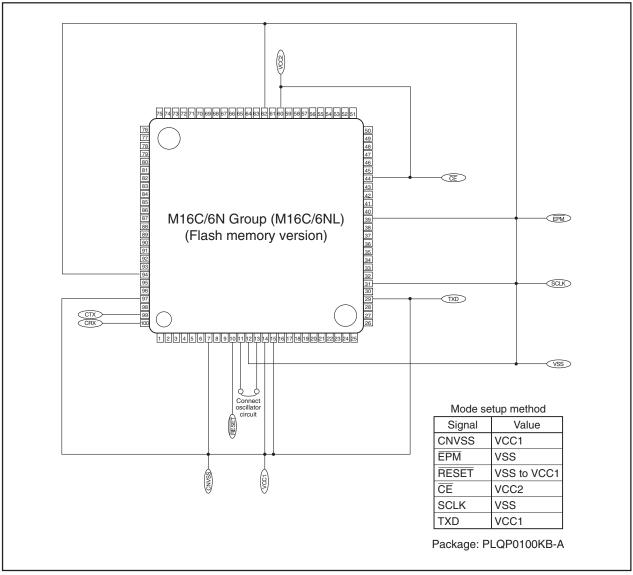


Figure 21.17 Pin Connections for CAN I/O Mode (1)

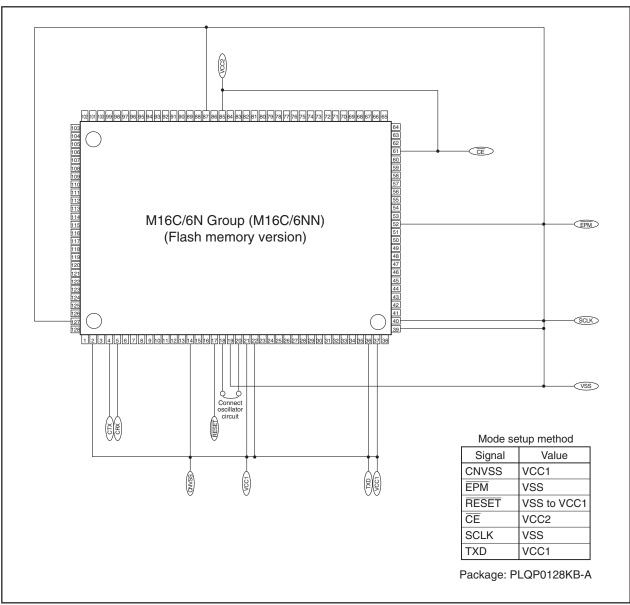


Figure 21.18 Pin Connections for CAN I/O Mode (2)

21.6.2 Example of Circuit Application in CAN I/O Mode

Figure 21.19 shows example of circuit application in CAN I/O mode. Refer to the user's manual of your CAN programmer to handle pins controlled by a CAN programmer.



Figure 21.19 Circuit Application in CAN I/O Mode

22. Electrical Characteristics

M16C/6N Group (M16C/6NL, M16C/6NN)

22.1 Electrical Characteristics

Table 22.1 Absolute Maximum Ratings

Value o 6.5 o 6.5 /CC+0.3	V V V
o 6.5	V
/CC+0.3	V
o 6.5	V
/CC+0.3	V
o 6.5	V
00	mW
o 85	°C
60	
150	°C
	CC+0.3 0 6.5 0 0 85 60

NOTE:

1. Ports P11 to P14 are only in the 128-pin version.

Table 22.2 Recommended Operating Conditions (1) (1)

0		Damamatan		Linit		
Symbol		Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Volta	age (VCC1 = VCC2)	3.0	5.0	5.5	V
AVcc	Analog Sup	oly Voltage		Vcc		V
Vss	Supply Volta	age		0		V
AVss	Analog Sup	oly Voltage		0		V
VIH	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0.8Vcc		Vcc	V
	Voltage	P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0				
		to P13_7, P14_0, P14_1,				
		XIN, RESET, CNVSS, BYTE				
		P7_1, P9_1	0.8Vcc		6.5	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8Vcc		Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5Vcc		Vcc	
		(Data input during memory expansion and microprocessor modes)				
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0		0.2Vcc	V
	Voltage	P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to				V
		P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14_0, P14_1, XIN, RESET, CNVSS, BYTE				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16Vcc	V
		(Data input during memory expansion and microprocessor modes)				
OH(peak)	HIGH Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA
	Output Currer	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to				
		P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0				
		to P13_7, P14_0, P14_1				
IOH(avg)	HIGH Average	PO_0 to PO_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA
	Output Currer	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to				
		P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0				
		to P13_7, P14_0, P14_1				
IOL(peak)	LOW Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			10.0	mA
	Output Currer	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14_0, P14_1				
I _{OL(avg)}	LOW Average	e P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA
	Output Currer	t P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
	<u></u>	P14_0, P14_1				L

- 1. Referenced to VCC = 3.0 to 5.5V at Topr = -40 to 85°C unless otherwise specified.
- 2. The mean output current is the mean value within 100 ms.
- $3. \ The \ total \ I_{OL(peak)} \ for \ ports \ P0, \ P1, \ P2, \ P8_6, \ P8_7, \ P9, \ P10, \ P11, \ P14_0 \ and \ P14_1 \ must \ be \ 80mA \ max.$

The total IoL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12 and P13 must be 80mA max.

The total IOH(peak) for ports P0, P1, and P2 must be -40mA max.

The total IoH(peak) for ports P3, P4, P5, P12 and P13 must be -40mA max.

The total IoH(peak) for ports P6, P7 and P8_0 to P8_4 must be -40mA max.

The total $I_{OH(peak)}$ for ports P8_6, P8_7, P9, P10, P11, P14_0 and P14_1 must be -40mA max.

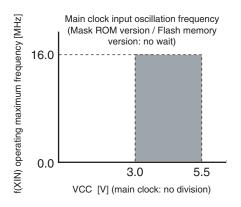

4. P11 to P14 are only in the 128-pin version.

Table 22.3	Recommended	Operating	Conditions	(2)	(1)
I abic ZZ.0	riccommicmaca	Opcialing	Conditions	\ <i>~</i> /	

Cumple of		Parameter					Standard			
Symbol		Para	ameter		Min.	Тур.	Max.	Unit		
f(XIN)	Main Clock Input Oscillation No Wait Mask ROM Version VCC = 3.0 to 5.5V						16	MHz		
	Frequency (2) (3) (4)		Flash Memory Version							
f(XCIN)	Sub Clock Oscillation Fi	ub Clock Oscillation Frequency					50	kHz		
f(Ring)	On-chip Oscillation Fred	On-chip Oscillation Frequency						MHz		
f(PLL)	PLL Clock Oscillation Fi	PLL Clock Oscillation Frequency					24	MHz		
f(BCLK)	CPU Operation Clock			VCC = 3.0 to 5.5V	0		24	MHz		
tsu(PLL)	PLL Frequency Synthes	izer Sta	bilization Wait Tim	е			20	ms		
f(ripple)	Power Supply Ripple Al	lowable	Frequency (VCC)				10	kHz		
V _{P-P(ripple)}	Power Supply Ripple All	owable	Amplitude Voltage	VCC = 5V			0.5	V		
				VCC = 3V			0.3			
VCC(\Delta V/\Delta T)	Power Supply Ripple Ri	sing/Fal	lling Gradient	VCC = 5V			0.3	V/ms		
				VCC = 3V			0.3			

- 1. Referenced to VCC = 3.0 to 5.5V at Topr = -40 to 85°C unless otherwise specified.
- 2. Relationship between main clock oscillation frequency and supply voltage is shown right.
- 3. Execute program/erase of flash memory by VCC = 3.3 ± 0.3 V or VCC = 5.0 ± 0.5 V.
- 4. When using 16MHz and over, use PLL clock. PLL clock oscillation frequency which can be used is 16MHz, 20MHz or 24MHz.

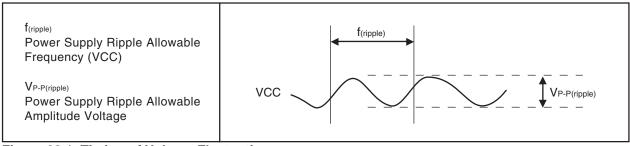


Figure 22.1 Timing of Voltage Fluctuation

Table 22.4 Electrical Characteristics (1) (1)

VCC = 5V

	2.4 Electrical	<u> </u>	1131103 (1)		_			= 5V
Symbol		Pa	rameter	Measuring Condition	Min.	tandar Typ.	d Max.	Unit
Vон	HIGH Output Voltage	P3_0 to P P6_0 to P6	0_7, P1_0 to P1_7, P2_0 to P2_7, 3_7, P4_0 to P4_7, P5_0 to P5_7, _7, P7_0, P7_2 to P7_7, P8_0 to P8_4, 7, P9_0, P9_2 to P9_7, P10_0 to P10_7,		Vcc-2.0		Vcc	V
		P11_0 to P P14_0, P1	11_7, P12_0 to P12_7, P13_0 to P13_7, 4_1					
Vон	HIGH Output Voltage	P3_0 to P P6_0 to P6 P8_6, P8_7	0_7, P1_0 to P1_7, P2_0 to P2_7, 3_7, P4_0 to P4_7, P5_0 to P5_7, _7, P7_0, P7_2 to P7_7, P8_0 to P8_4, 7, P9_0, P9_2 to P9_7, P10_0 to P10_7, 11_7, P12_0 to P12_7, P13_0 to P13_7, 4_1	·	Vcc-0.3		Vcc	V
Vон	HIGH Output	XOUT	HIGHPOWER	Iон = −1mA	3.0		Vcc	V
VOIT	Voltage	λου ι	LOWPOWER	$I_{OH} = -0.5 \text{mA}$	3.0		Vcc	
	HIGH Output	XCOUT	HIGHPOWER	With no load applied		2.5		V
	Voltage		LOWPOWER	With no load applied		1.6		
Vol	LOW Output Voltage	P3_0 to P P6_0 to P P8_6, P8_	O_7, P1_0 to P1_7, P2_0 to P2_7, 3_7, P4_0 to P4_7, P5_0 to P5_7, 6_7, P7_0 to P7_7, P8_0 to P8_4, _7, P9_0 to P9_7, P10_0 to P10_7, 11_7, P12_0 to P12_7, P13_0 to P13_7, 4_1				2.0	V
Vol	LOW Output Voltage	P3_0 to P P6_0 to P P8_6, P8_	0_7, P1_0 to P1_7, P2_0 to P2_7, 3_7, P4_0 to P4_7, P5_0 to P5_7, 6_7, P7_0 to P7_7, P8_0 to P8_4, _7, P9_0 to P9_7, P10_0 to P10_7, 11_7, P12_0 to P12_7, P13_0 to P13_7, 4_1	·			0.45	V
Vol	LOW Output	XOUT	HIGHPOWER	IoL = 1mA			2.0	V
	Voltage '		LOWPOWER	IoL = 0.5mA			2.0	
	LOW Output Voltage	XCOUT	HIGHPOWER	With no load applied With no load applied		0		V
V _T +-V _T -	Hysteresis	INTO to IN	LOWPOWER TAOIN to TA4IN, TB0IN to TB5IN, T8, NMI, ADTRG, CTS0 to CTS2, SCL2, SDA0 to SDA2, CLK0 to CLK6, TA4OUT, KIO to KI3, RXD0 to RXD2, N6		0.2		1.0	V
V _T +-V _T -	Hysteresis	RESET			0.2		2.5	V
V_T+-V_T-	Hysteresis	XIN			0.2		0.8	V
Ін	HIGH Input Current	P3_0 to P P6_0 to P P9_0 to P9 P12_0 to P XIN, RESI	O_7, P1_0 to P1_7, P2_0 to P2_7, 3_7, P4_0 to P4_7, P5_0 to P5_7, 6_7, P7_0 to P7_7, P8_0 to P8_7, 0_7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1, ET, CNVSS, BYTE				5.0	μА
IιL	LOW Input Current	P3_0 to P P6_0 to P P9_0 to P9 P12_0 to P	O_7, P1_0 to P1_7, P2_0 to P2_7, 3_7, P4_0 to P4_7, P5_0 to P5_7, 6_7, P7_0 to P7_7, P8_0 to P8_7, 0_7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1, ET, CNVSS, BYTE				-5.0	μА
RPULLUP	Pull-up Resistance	P3_0 to P P6_0 to P6 P8_6, P8_7 P11_0 to P P14_0, P1			30	50	170	kΩ
RfXIN	Feedback Resi		XIN			1.5		MΩ
RfXCIN	Feedback Resi		XCIN	At stop mode	2.0	15		MΩ V
V _{RAM} NOTES:	RAM Retention	voitage		TUT STOP HINGE	∠.∪			. v

^{1.} Referenced to VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85° C, f(BCLK) = 24MHz unless otherwise specified.

^{2.} P11 to P14, $\overline{\text{INT6}}$ to $\overline{\text{INT8}}$, CLK5, CLK6, SIN5 and SIN6 are only in the 128-pin version.

Table 22.5 Electrical Characteristics (2) (1)

Symbol	Pa	rameter	Moacur	ing Condition	S	Standar	d	Unit
-					Min.	Тур.	Max.	OIII
Icc	Power Supply	Output pins are open	Mask ROM	f(BCLK) = 24MHz,		19	33	mA
	Current	and other pins are VSS.		PLL operation,				
	(VCC = 3.0 to 5.5V)			No division				
				On-chip oscillation,		1		mA
				No division				
			Flash Memory	f(BCLK) = 24MHz,		21	35	mA
				PLL operation,				
				No division				
				On-chip oscillation,		1.8		mA
				No division				
			Flash Memory	f(BCLK) = 10MHz,		15		mA
			Program	VCC = 5V				
			Flash Memory	f(BCLK) = 10MHz,		25		mA
			Erase	VCC = 5V				
			Mask ROM	f(BCLK) = 32kHz,		25		μΑ
				Low power dissipation				
				mode, ROM (2)				
			Flash Memory	f(BCLK) = 32kHz,		25		μΑ
				Low power dissipation				
				mode, RAM (2)				
				f(BCLK) = 32kHz,		420		μΑ
				Low power dissipation				
				mode,				
				Flash memory (2)				
			Mask ROM	On-chip oscillation,		50		μΑ
			Flash Memory	Wait mode				
				f(BCLK) = 32kHz,		8.5		μΑ
				Wait mode (3),				
				Oscillation capacity High				
				f(BCLK) = 32kHz,		3.0		μΑ
				Wait mode (3),				
				Oscillation capacity Low				
				Stop mode,		0.8	3.0	μΑ
				Topr = 25°C				

- 1. Referenced to VCC = 3.0 to 5.5V, VSS = 0V at Topr = -40 to 85° C, f(BCLK) = 24MHz unless otherwise specified.
- 2. This indicates the memory in which the program to be executed exists.
- 3. With one timer operated using fC32.

Table 22.6 A/D Conversion Characteristics (1)

Cumbal	Paran	20101		Magazzing Condition	5	Standaı	′d	Unit
Symbol	Paran	neter	Measuring Condition		Min.	Тур.	Max.	Unit
-	Resolution		VREF = VCC				10	Bit
INL	Integral	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	Nonlinearity		= VCC	ANO_0 to ANO_7 input, AN2_0 to AN2_7 input				
	Error		= 5V	External operation amp connection mode			±7	LSB
			VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±5	LSB
			= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 3.3V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 3.3V			±2	LSB
_	Absolute	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	Accuracy		= VCC	ANO_0 to ANO_7 input, AN2_0 to AN2_7 input				
			= 5V	External operation amp connection mode			±7	LSB
			VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±5	LSB
			= VCC	ANO_0 to ANO_7 input, AN2_0 to AN2_7 input				
			= 3.3V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 3.3V			±2	LSB
DNL	Differential Non	linearity Error					±1	LSB
_	Offset Error						±3	LSB
_	Gain Error						±3	LSB
RLADDER	Resistor Ladde	er	VREF :	= VCC	10		40	kΩ
tconv	10-bit Convers	ion Time,	VREF :	= VCC = 5V, φAD = 10MHz	3.3			μs
	Sample & Hold	d Available						
	8-bit Conversi	on time,	VREF :	= VCC = 5V, φAD = 10MHz	2.8			μs
	Sample & Hold	d Available						
tsamp	Sampling Time)			0.3			μs
V _{REF}	Reference Vol	tage			2.0		Vcc	V
VIA	Analog Input V	oltage			0		VREF	V

- 1. Referenced to VCC = AVCC = VREF = 3.3 to 5.5V, VSS = AVSS = 0V, -40 to 85°C unless otherwise specified.
- 2. \$\phiAD frequency must be 10MHz or less.
- 3. When sample & hold is disabled, ϕ AD frequency must be 250kHz or more in addition to a limit of NOTE 2. When sample & hold is enabled, ϕ AD frequency must be 1MHz or more in addition to a limit of NOTE 2.

Table 22.7 D/A conversion Characteristics (1)

Symbol	Parameter	Measuring Condition	S	Unit		
Symbol Parameter		Measuring Condition	Min.	Тур.	Max.	Ollit
_	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

- 1. Referenced to VCC = AVCC = VREF = 3.3 to 5.5V, VSS = AVSS = 0V, -40 to 85°C unless otherwise specified.
- 2. This applies when using one D/A converter, with the DAi register (i = 0, 1) for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, the current IVREF always flows even though VREF may have been set to be unconnected by the ADCON1 register.

Table 22.8 Flash Memory Version Electrical Characteristics (1)

Cymbol	Paramete	r		Standard		Unit
Symbol	Faramete	I	Min.	Тур.	/p. Max.	
-	Program and Erase Endurance	(2)	100			cycle
-	Word Program Time (VCC = 5.0)V)		25	200	μs
-	Lock Bit Program Time			25	200	μs
-	Block Erase Time	4-Kbyte block		0.3	4	s
	(VCC = 5.0V)	8-Kbyte block		0.3	4	S
		32-Kbyte block		0.5	4	s
		64-Kbyte block		0.8	4	s
-	Erase All Unlocked Blocks Time)			4 × n (3)	S
tps	Flash Memory Circuit Stabilizati	on Wait Time			15	μs

- 1. Referenced to VCC = 4.5 to 5.5V, 3.0 to 3.6V, Topr = 0 to 60°C unless otherwise specified.
- 2. Program and Erase Endurance refers to the number of times a block erase can be performed.

 If the program and erase endurance is n (n = 100), each block can be erased n times.

 For example, if a 4-Kbyte block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)
- 3. n denotes the number of blocks to erase.

Table 22.9 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60°C)

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC = 3.3 \pm 0.3 V \text{ or } 5.0 \pm 0.5 V$	VCC = 3.0 to 5.5V

Table 22.10 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring	S	Standard		Unit
Symbol	i didilicici	Condition	Min.	Тур.	Max.	Offit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	VCC = 3.0 to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μs
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

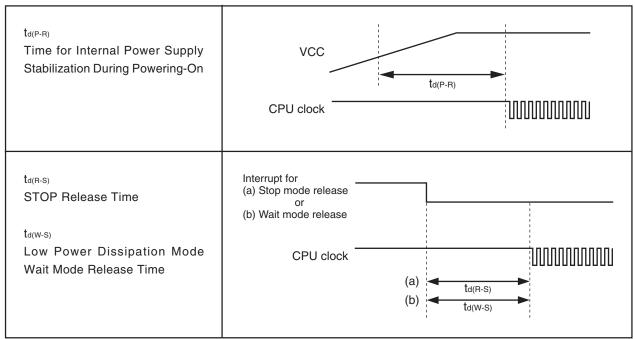


Figure 22.2 Power Supply Circuit Timing Diagram

Timing Requirements

VCC = 5V

(Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.11 External Clock Input (XIN Input)

Symbol	Parameter	Stan	dard	Unit
Symbol	Faranielei	Min.	Max.	Onli
tc	External Clock Input Cycle Time	62.5		ns
t _{w(H)}	External Clock Input HIGH Pulse Width	25		ns
t _{w(L)}	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

Table 22.12 Memory Expansion Mode and Microprocessor Mode

Cumbal	Parameter	Stan	Unit	
Symbol	rafameter	Min.	Max.	Offic
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}}$$
 - 45 [ns]

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f(BCLK)}$$
 - 45 [ns] n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(\text{n}-0.5)\times 10^9}{\text{f(BCLK)}}-45~\text{[ns]} \qquad \text{n is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Timing Requirements

VCC = 5V

(Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.13 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
	Farameter	Min. Max.	Unit	
t _{c(TA)}	TAilN Input Cycle Time	100		ns
tw(TAH)	TAilN Input HIGH Pulse Width	40		ns
tw(TAL)	TAiIN Input LOW Pulse Width	40		ns

Table 22.14 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Falaillelei	Min. Max.	Offic	
tc(TA)	TAilN Input Cycle Time	400		ns
tw(TAH)	TAilN Input HIGH Pulse Width	200		ns
tw(TAL)	TAilN Input LOW Pulse Width	200		ns

Table 22.15 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard Min. Max.		Unit
	Faranielei			Offit
t _{c(TA)}	TAilN Input Cycle Time	200		ns
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAilN Input LOW Pulse Width	100		ns

Table 22.16 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	dard	Unit
Syllibol	Farameter	Min.	Max.	Offic
tw(TAH)	TAiIN Input HIGH Pulse Width	100		ns
tw(TAL)	TAilN Input LOW Pulse Width	100		ns

Table 22.17 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
	Farameter	Min.	Max.	Ullit
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 22.18 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
	Falaillelei	Min. M	Max.	
t _{c(TA)}	TAilN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAilN Input Setup Time	200		ns

Timing Requirements

VCC = 5V

(Referenced to VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.19 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Syllibol	i didilielei	Min.	Max.	Unit
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	80		ns

Table 22.20 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
	Farameter	Min.	Max.	Offic
t _{c(TB)}	TBilN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 22.21 Timer B Input (Pulse Width Measurement Mode)

Symbol Parameter	Davametar	Standard		Unit
	Farameter	Min.	Max.	
tc(TB)	TBilN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 22.22 A/D Trigger Input

Symbol	Parameter	Standard		I Imia
		Min.	Max.	Unit
tc(AD)	ADTRG Input Cycle Time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG Input LOW Pulse Width	125		ns

Table 22.23 Serial Interface

Symbol	Parameter	Stan	Unit	
		Min.	Max.	
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 22.24 External Interrupt INTi Input

Symbol Parameter -	Doromotor	Standard		Unit
	Min.	Max.	Unit	
tw(INH)	INTi Input HIGH Pulse Width	250		ns
tw(INL)	INTi Input LOW Pulse Width	250		ns

Switching Characteristics

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Table 22.25 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

Symbol	Parameter	Measuring condition	Standard		Unit
Syllibol	r didilletel		Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.3		25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 10 \text{ [ns]}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}}$$
 – 40 [ns] f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

$$t = -CR \times In (1 - V_{OL} / V_{CC})$$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 \text{ Vcc}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t =
$$-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns}.$$

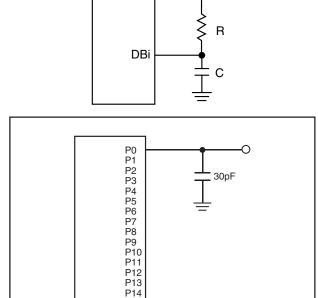


Figure 22.3 Port P0 to P14 Measurement Circuit

1. P11 to P14 are only in the 128-pin version.

NOTE

Switching Characteristics

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Table 22.26 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

Symbol	Parameter	Measuring condition	Standard		Unit
Symbol	Falanetei		Min.	Max.	Onn
td(BCLK-AD)	Address output delay time	Figure 22.3		25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 10 \text{ [ns]}$$

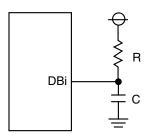
2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad \text{n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting.} \\ \text{When n = 1, f(BCLK) is 12.5 MHz or less.}$$

This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


$$t = -CR \times In (1 - V_{OL} / V_{CC})$$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 \text{ Vcc}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

$$t = -30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}.$$

Switching Characteristics

VCC = 5V

(Referenced to VCC = 5V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Table 22.27 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

Symbol	Parameter	Measuring condition	Standard		Unit
Symbol	r di dilletel		Min.	Max.	John
td(BCLK-AD)	Address output delay time	Figure 22.3		25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		(NOTE 1)		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (refers to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns
td(BCLK-ALE)	ALE signal output delay time (refers to BCLK)			15	ns
th(BCLK-ALE)	ALE signal output hold time (refers to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (refers to Address)		(NOTE 3)		ns
th(ALE-AD)	ALE signal output hold time (refers to Address)		(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 10 \text{ [ns]}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f(BCLK)}$$
 - 40 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 25 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 15 \text{ [ns]}$$

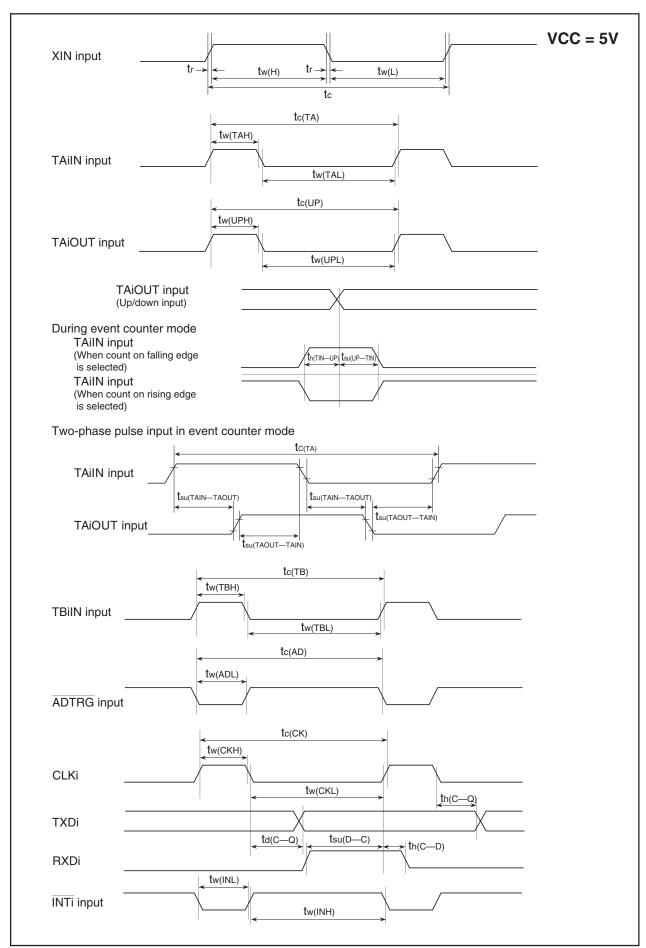
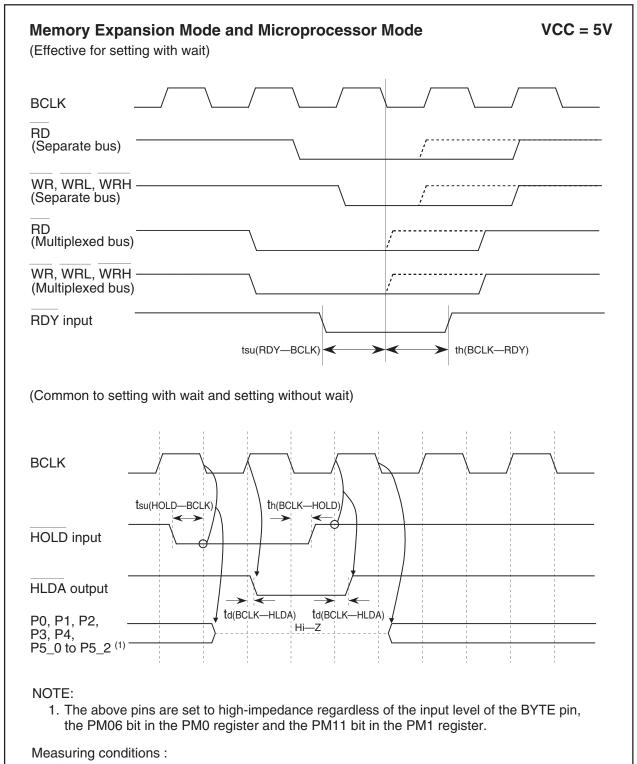



Figure 22.4 Timing Diagram (1)

- VCC = 5 V
- Input timing voltage $\,$: Determined with $V_{IL}=1.0~V,~V_{IH}=4.0~V$
- Output timing voltage: Determined with Vol = 2.5 V, Voh = 2.5 V

Figure 22.5 Timing Diagram (2)

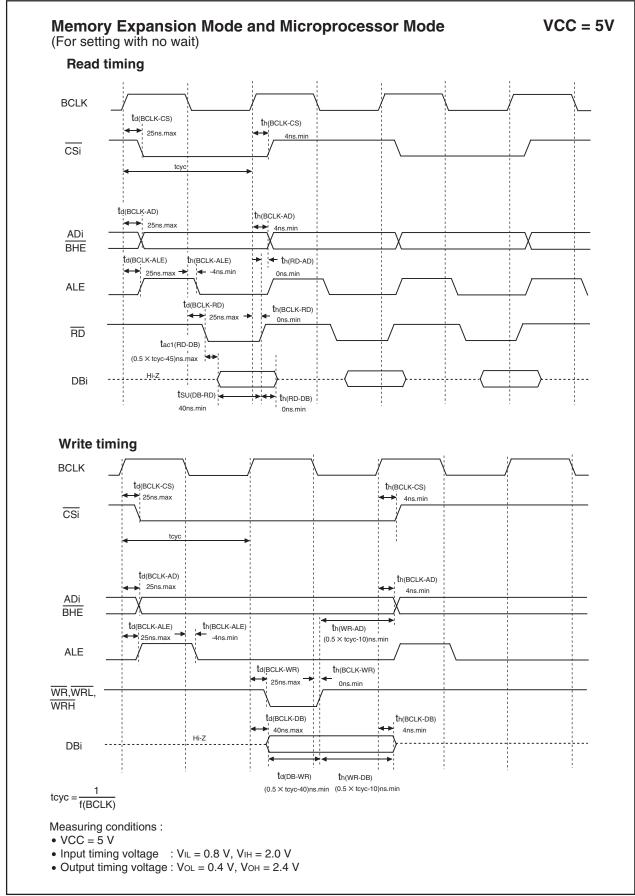


Figure 22.6 Timing Diagram (3)

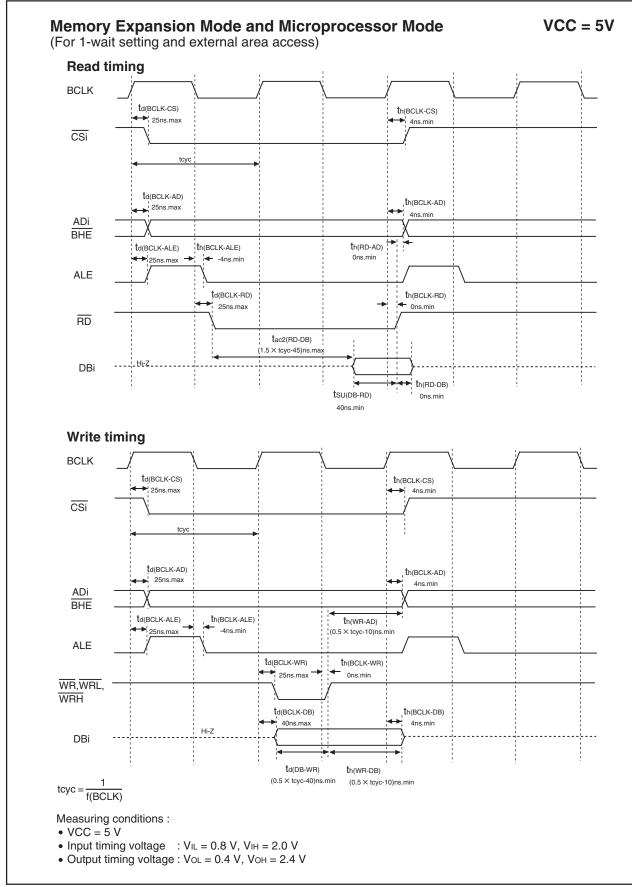


Figure 22.7 Timing Diagram (4)

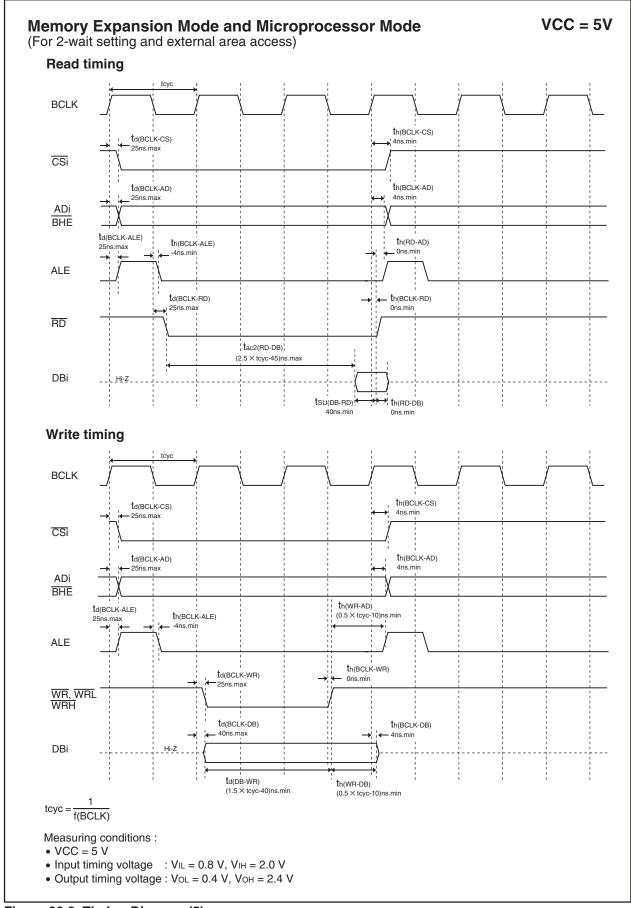


Figure 22.8 Timing Diagram (5)

Figure 22.9 Timing Diagram (6)

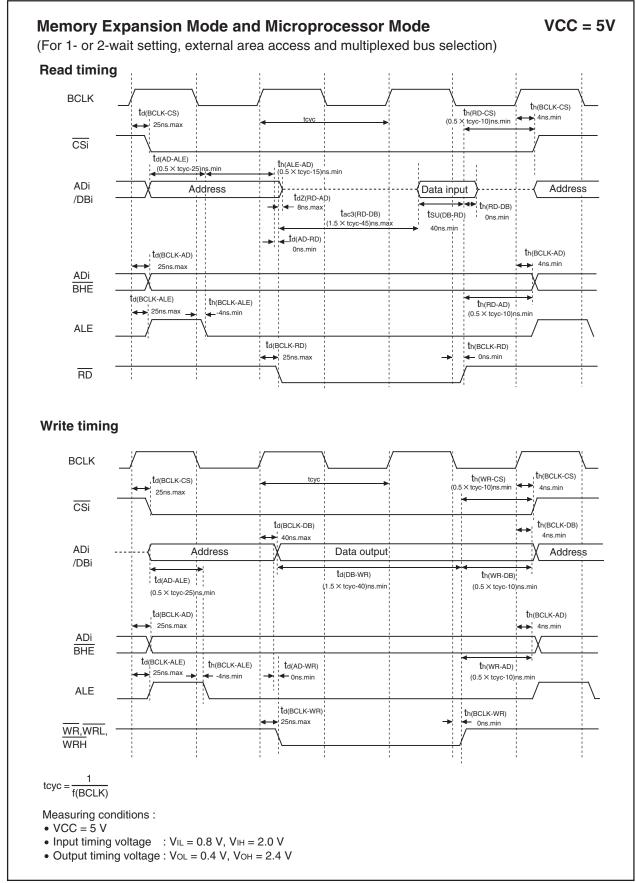


Figure 22.10 Timing Diagram (7)

M16C/6N Group (M16C/6NL, M16C/6NN)

Figure 22.11 Timing Diagram (8)

• Output timing voltage : VoL = 0.4 V, VoH = 2.4 V

Table 22.28 Electrical Characteristics (1)

VCC = 3.3V

					S	tandar	<u>rd</u>	
Symbol		Pa	rameter	Measuring Condition	Min.	Тур.	Max.	Unit
Vон	HIGH Output	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	Iон = −1mA	Vcc-0.5		Vcc	V
	Voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			$_{7}$, P7 $_{0}$, P7 $_{2}$ to P7 $_{7}$, P8 $_{0}$ to P8 $_{4}$,					
		P8_6, P8_7	7, P9_0, P9_2 to P9_7, P10_0 to P10_7,					
			11_7,P12_0toP12_7,P13_0toP13_7,					
		P14_0, F						
Vон	HIGH Output	XOUT	HIGHPOWER	Іон = -0.1mA	Vcc-0.5		Vcc	V
	Voltage		LOWPOWER	Іон = −50μА	Vcc-0.5		Vcc	
	HIGH Output	XCOUT	HIGHPOWER	With no load applied		2.5		V
	Voltage		LOWPOWER	With no load applied		1.6		
Vol	LOW Output		0_7, P1_0 to P1_7, P2_0 to P2_7,				0.5	V
	Voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0 to P7_7, P8_0 to P8_4,					
			_7, P9_0 to P9_7, P10_0 to P10_7,					
		P11_0toP	11_7,P12_0to P12_7,P13_0to P13_7,					
		P14_0, P	14_1					
Vol	LOW Output	XOUT	HIGHPOWER	IoL = 0.1mA			0.5	V
	Voltage		LOWPOWER	Ιοι = 50μΑ			0.5	
	LOW Output	XCOUT	HIGHPOWER	With no load applied		0		V
	Voltage		LOWPOWER	With no load applied		0		
V _T +-V _T -	Hysteresis	HOLD, RE	TAOIN to TA4IN, TB0IN to TB5IN,		0.2		0.8	٧
		INTO to IN	IT5, NMI, ADTRG, CTS0 to CTS2,					
		SCL0 to S	CL2, SDA0 to SDA2, CLK0 to CLK3,					
			to TA4OUT, KIO to KI3,					
			RXD2, SIN3					
V _T +-V _T -	Hysteresis	RESET			0.2		1.8	V
	Hysteresis	XIN			0.2		0.8	V
Іін	HIGH Input		0_7, P1_0 to P1_7, P2_0 to P2_7,	V ₁ = 3.3V	0.2		4.0	μA
•	Current		3_7, P4_0 to P4_7, P5_0 to P5_7,				7.0	'
			6_7, P7_0 to P7_7, P8_0 to P8_7,					
			P9_7, P10_0 to P10_7,					
			P11_7, P12_0 to P12_7,					
		-	P13_7, P14_0, P14_1,					
			SET, CNVSS, BYTE					
Iı∟	LOW Input		0_7, P1_0 to P1_7, P2_0 to P2_7,	\/. O\/			-4.0	μA
IIL	Current		3_7, P4_0 to P4_7, P5_0 to P5_7,				-4 .0	μΛ
	Current	-	5_7, P7_0 to P7_7, P8_0 to P8_7,					
			9_7, P10_0 to P10_7,					
		_	P11_7, P12_0 to P12_7,					
			P13_7, P14_0, P14_1,					
_			SET, CNVSS, BYTE					
RPULLUP	Pull-up		0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_1 = 0V$	50	100	500	kΩ
	Resistance		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0, P7_2 to P7_7, P8_0 to					
			_6, P8_7, P9_0, P9_2 to P9_7,					
			P10_7, P11_0 to P11_7,					
			P12_7, P13_0 to P13_7,					
		P14_0, F	14_1					
RfXIN	Feedback Resi		XIN			3.0		MΩ
RfXCIN	Feedback Resi	stance	XCIN			25		MΩ
VRAM	RAM Retention				2.0			V

NOTES:

- 1. Referenced to VCC = 3.0 to 3.6V, VSS = 0V at Topr = -40 to 85° C, f(BCLK) = 24MHz unless otherwise specified.
- 2. P11 to P14, $\overline{\text{INT6}}$ to $\overline{\text{INT8}}$, CLK5, CLK6, SIN5 and SIN6 are only in the 128-pin version.

Timing Requirements

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.29 External Clock Input (XIN Input)

Symbol	Parameter	Standard		Unit
Symbol	Faranielei	Min. Max. 62.5		
tc	External Clock Input Cycle Time	62.5		ns
t _{w(H)}	External Clock Input HIGH Pulse Width	25		ns
t _{w(L)}	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

Table 22.30 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Standard		Unit
Symbol	Parameter	Min.	Max.	Offic
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	50		ns
tsu(RDY-BCLK)	RDY input setup time	40		ns
tsu(HOLD-BCLK)	HOLD input setup time	50		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}}$$
 - 60 [ns]

2. Calculated according to the BCLK frequency as follows:

$$\frac{(\text{n}-0.5)\times 10^9}{\text{f(BCLK)}}-60 \text{ [ns]} \qquad \text{n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{(\text{n}-0.5)\times 10^9}{\text{f(BCLK)}}$$
 - 60 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

Timing Requirements

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.31 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	Faranielei	Min.	Max.	Offit
tc(TA)	TAilN Input Cycle Time	150		ns
tw(TAH)	TAilN Input HIGH Pulse Width	60		ns
tw(TAL)	TAilN Input LOW Pulse Width	60		ns

Table 22.32 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Standard		Unit
	Falaillelei	Min.	Max.	Ollit
tc(TA)	TAilN Input Cycle Time	600		ns
tw(TAH)	TAilN Input HIGH Pulse Width	300		ns
tw(TAL)	TAilN Input LOW Pulse Width	300		ns

Table 22.33 Timer A Input (External Trigger Input in One-shot Timer Mode)

 	Parameter	Stan	Standard	
	Falametei		Max.	Unit
tc(TA)	TAilN Input Cycle Time	300		ns
tw(TAH)	TAilN Input HIGH Pulse Width	150		ns
tw(TAL)	TAilN Input LOW Pulse Width	150		ns

Table 22.34 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter		Standard		
Symbol	Farameter	Min.	Max.	Unit	
tw(TAH)	TAiIN Input HIGH Pulse Width	150		ns	
tw(TAL)	TAilN Input LOW Pulse Width	150		ns	

Table 22.35 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter		Standard		
	Farameter	Min.	Min. Max.	Unit	
t _{c(UP)}	TAiOUT Input Cycle Time	3000		ns	
tw(UPH)	TAiOUT Input HIGH Pulse Width	1500		ns	
tw(UPL)	TAiOUT Input LOW Pulse Width	1500		ns	
tsu(UP-TIN)	TAiOUT Input Setup Time	600		ns	
th(TIN-UP)	TAiOUT Input Hold Time	600		ns	

Table 22.36 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter		Standard	
	Falailletei	Min.	Max.	Unit
tc(TA)	TAilN Input Cycle Time	2		μs
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	500		ns
tsu(TAOUT-TAIN)	TAilN Input Setup Time	500		ns

Timing Requirements

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.37 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Standard	
	Farameter	Min.	Max.	Unit
t _{c(TB)}	TBiIN Input Cycle Time (counted on one edge)	150		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on one edge)	60		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	60		ns
t _{c(TB)}	TBiIN Input Cycle Time (counted on both edges)	300		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	120		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	120		ns

Table 22.38 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
	Farameter	Min.	Max.	Offit
t _{c(TB)}	TBiIN Input Cycle Time	600		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	300		ns
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns

Table 22.39 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
	Farameter	Min.	Max.	Offit
tc(TB)	TBiIN Input Cycle Time	600		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	300		ns
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns

Table 22.40 A/D Trigger Input

Symbol	Dovementor	Standard		Unit
Symbol	Parameter	Min.	Max.	Unit
tc(AD)	ADTRG Input Cycle Time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG Input LOW Pulse Width	200		ns

Table 22.41 Serial Interface

Cumbal	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	Unit
tc(CK)	CLKi Input Cycle Time	300		ns
tw(CKH)	CLKi Input HIGH Pulse Width	150		ns
tw(CKL)	CLKi Input LOW Pulse Width	150		ns
td(C-Q)	TXDi Output Delay Time		160	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	100		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 22.42 External Interrupt INTi Input

Symbol	Davameter	Standard		Unit
Syllibol	Parameter	Min.	Max.	Offic
tw(INH)	INTi Input HIGH Pulse Width	380		ns
tw(INL)	ĪNTi Input LOW Pulse Width	380		ns

Switching Characteristics

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Table 22.43 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

Symbol	Parameter	Measuring	Standard		Unit
Syllibol	conditio		Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.12		30	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			30	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			30	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 10 \text{ [ns]}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}}$$
 – 40 [ns] f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

$$t = -CR \times In (1 - V_{OL} / V_{CC})$$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 \text{ Vcc}$, C = 30 pF,

 $R = 1 k\Omega$, hold time of output "L" level is

$$t = -30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns}.$$

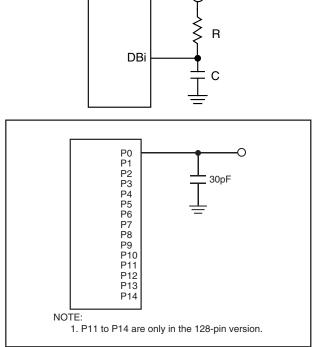


Figure 22.12 Port P0 to P14 Measurement Circuit

Switching Characteristics

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Table 22.44 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

Symbol	Parameter	Measuring	Standard		Unit
Syllibol	r di dilletel	condition	Min.	Max.	Offic
td(BCLK-AD)	Address output delay time	Figure 22.12		30	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			30	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			30	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR) (3)		(NOTE 1)	·	ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 10 \text{ [ns]}$$

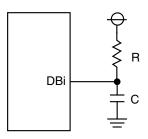
2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad \begin{array}{l} \text{n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting.} \\ \text{When n = 1, f(BCLK) is 12.5 MHz or less.} \end{array}$$

This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


$$t = - CR \times In (1 - V_{OL} / V_{CC})$$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 \text{ Vcc}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

$$t = -30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}.$$

Switching Characteristics

VCC = 3.3V

(Referenced to VCC = 3.3V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Table 22.45 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

Symbol	/mbol Parameter	Measuring	Standard		- Unit
Symbol		condition	Min.	Max.	Offic
td(BCLK-AD)	Address output delay time	Figure 22.12		50	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		(NOTE 1)		ns
th(WR-AD)	Address output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			50	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (refers to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD signal output delay time			40	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			40	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			50	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (refers to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns
td(BCLK-ALE)	ALE signal output delay time (refers to BCLK)			25	ns
th(BCLK-ALE)	ALE signal output hold time (refers to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (refers to Address)		(NOTE 3)		ns
th(ALE-AD)	ALE signal output hold time (refers to Address)		(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 10 \text{ [ns]}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f(BCLK)}$$
 - 50 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 40 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 15 \text{ [ns]}$$

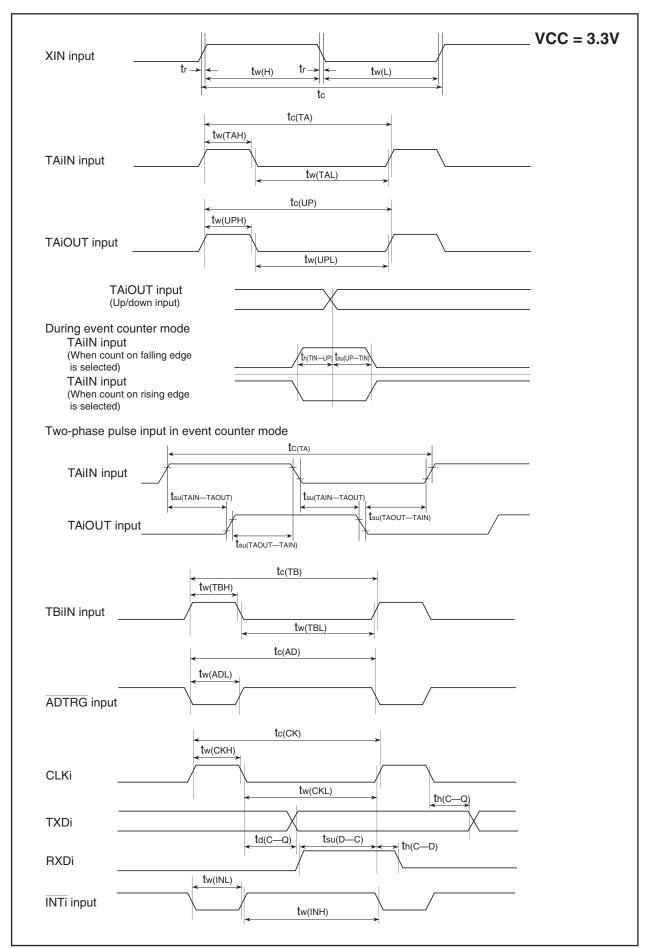
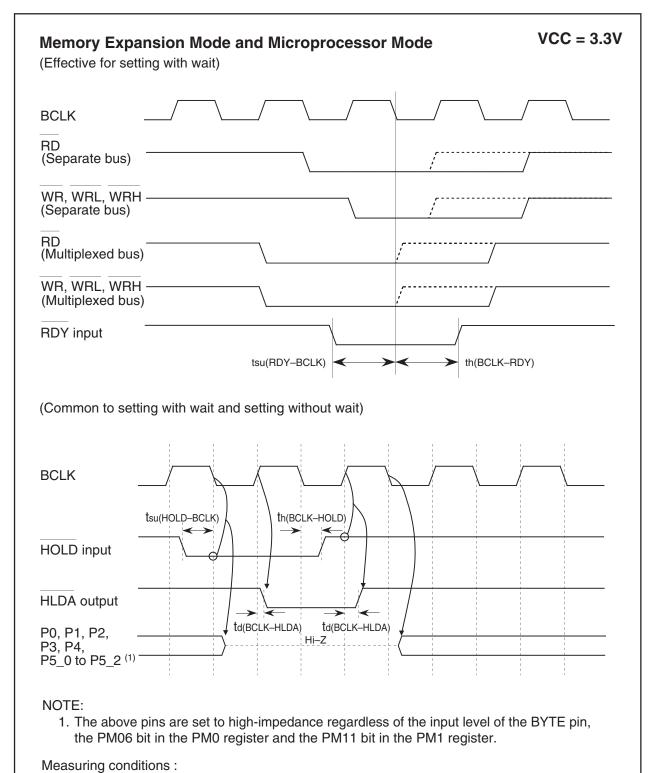



Figure 22.13 Timing Diagram (1)

VCC = 3.3 V

- Input timing voltage : Determined with $V_{IL} = 0.6 \text{ V}$, $V_{IH} = 2.7 \text{ V}$
- Output timing voltage: Determined with Vol = 1.65 V, Voh = 1.65 V

Figure 22.14 Timing Diagram (2)

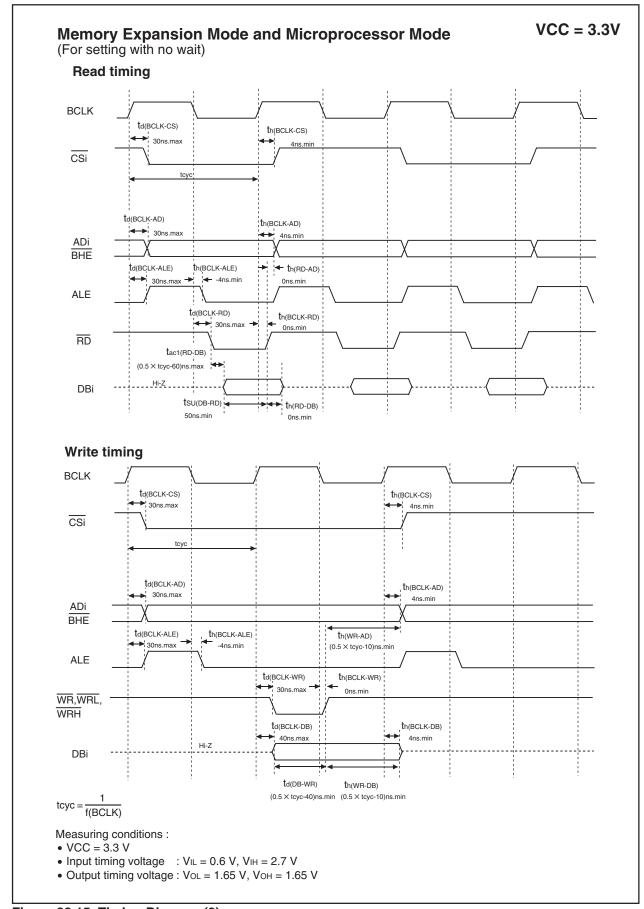


Figure 22.15 Timing Diagram (3)

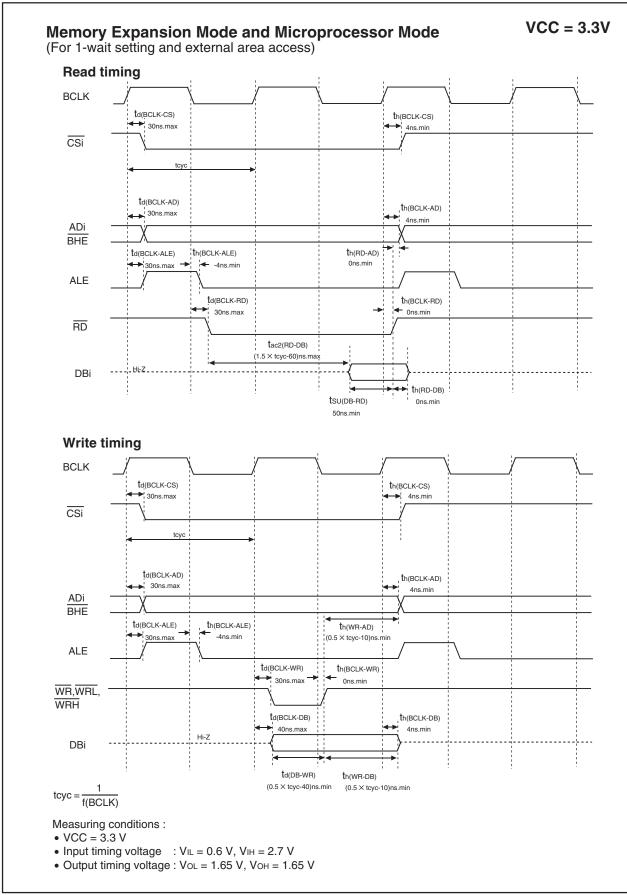


Figure 22.16 Timing Diagram (4)

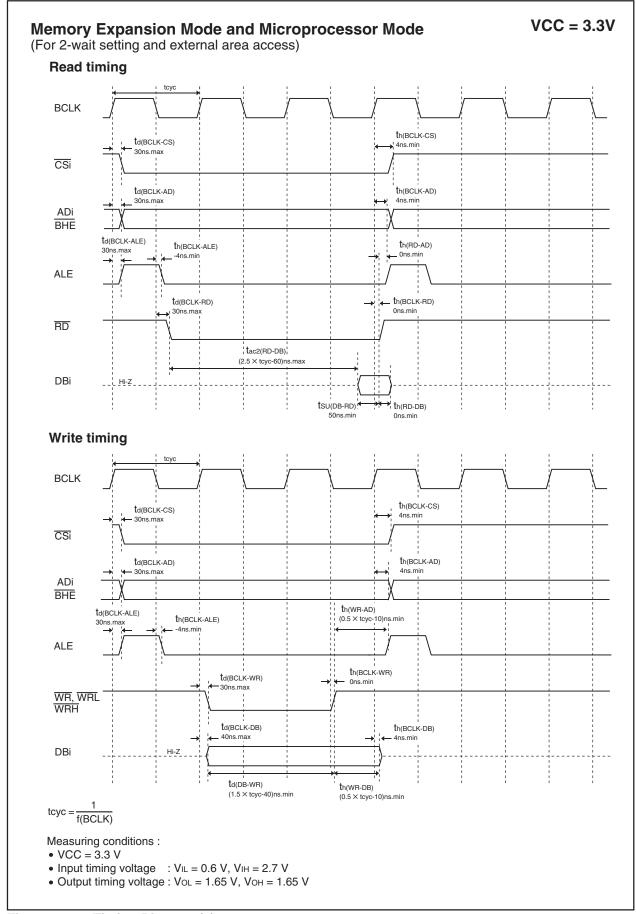


Figure 22.17 Timing Diagram (5)

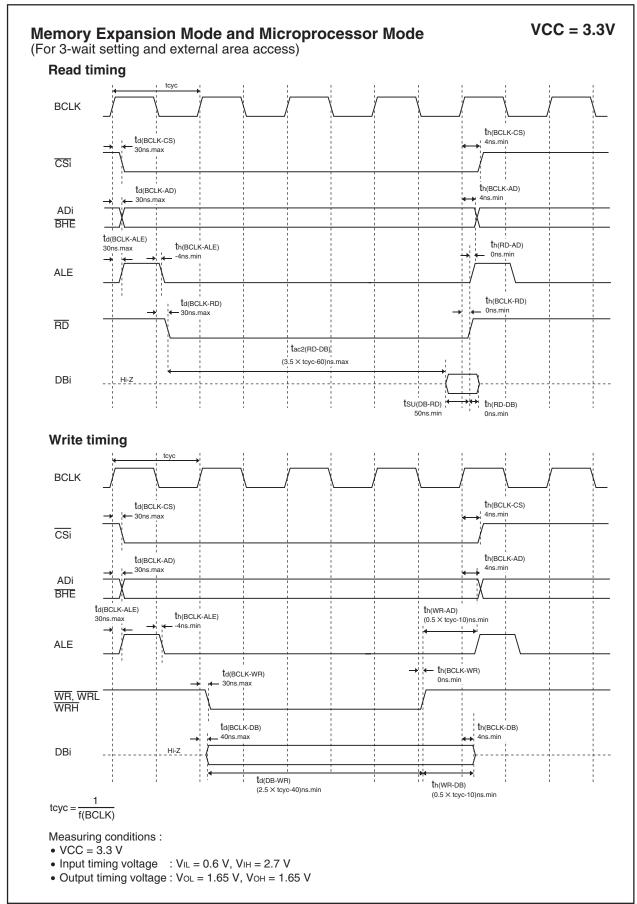


Figure 22.18 Timing Diagram (6)

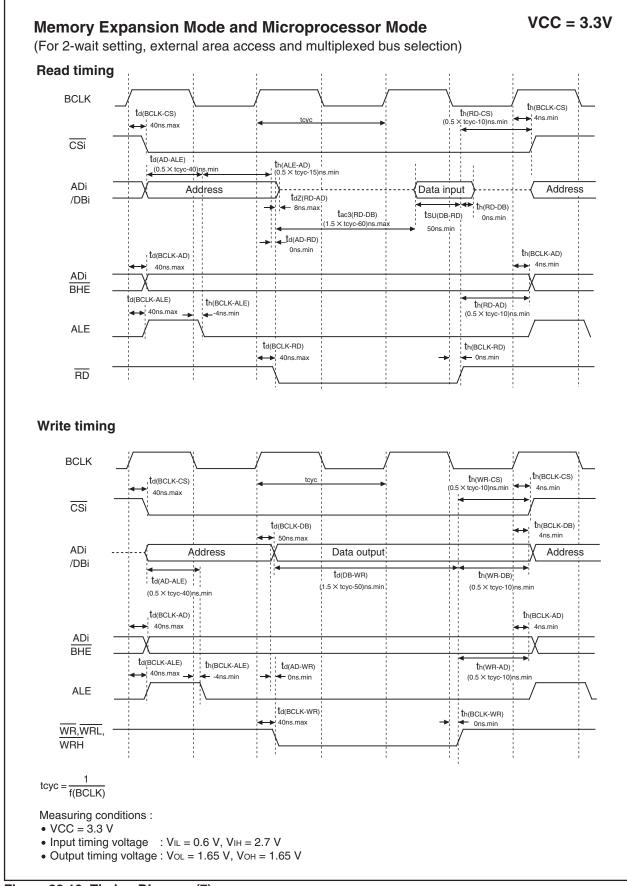


Figure 22.19 Timing Diagram (7)

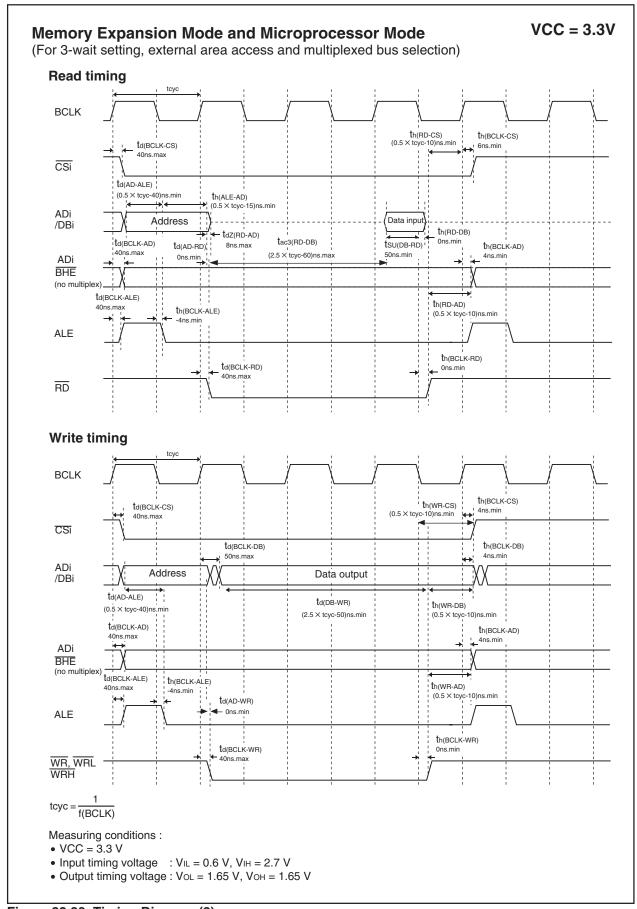


Figure 22.20 Timing Diagram (8)

23. Usage Precaution

23.1 SFR

There is the SFR which can not be read (containg bits that will result in unknown data when read).

Please set these registers to their previous values with the instructions other than the read modify write

Table 23.1 lists the registers contain bits that will result in unknown data when read and Table 23.2 lists the instruction table for read modify write.

Table 23.1 Registers Contain Bits that Will Result in Unknown Data When Read

Register Name	Symbol	Address
Timer A1-1 Register (1)	TA11	01C3h, 01C2h
Timer A2-1 Register (1)	TA21	01C5h, 01C4h
Timer A4-1 Register (1)	TA41	01C7h, 01C6h
Dead Time Timer	DTT	01CCh
Timer B2 Interrupt Occurrences Frequency Set Counter	ICTB2	01CDh
SI/O6 Bit Rate Generator (2)	S6BRG	01D9h
SI/O3 Bit Rate Generator	S3BRG	01E3h
SI/O4 Bit Rate Generator	S4BRG	01E7h
SI/O5 Bit Rate Generator (2)	S5BRG	01EBh
UART2 Bit Rate Generator	U2BRG	01F9h
UART2 Transmit Buffer Register	U2TB	01FBh, 01FAh
Up-Down Flag	UDF	0384h
Timer A0 Register (3)	TA0	0387h, 0386h
Timer A1 Register (1) (3)	TA1	0389h, 0388h
Timer A2 Register (1) (3)	TA2	038Bh, 038Ah
Timer A3 Register (3)	TA3	038Dh, 038Ch
Timer A4 Register (1) (3)	TA4	038Fh, 038Eh
UART0 Bit Rate Generator	U0BRG	03A1h
UART0 Transmit Buffer Register	U0TB	03A3h, 03A2h
UART1 Bit Rate Generator	U1BRG	03A9h
UART1 Transmit Buffer Register	U1TB	03ABh, 03AAh

NOTES:

- 1. It is affected only in three-phase motor control timer function.
- 2. These registers are only in the 128-pin version.
- 3. It is affected only in one-shot timer mode and pulse width modulation mode.

Table 23.2 Instruction Table for Read Modify Write

Function	Mnemonic
Bit Manipulation	BCLR, BNOT, BSET, BTSTC, BTSTS
Shift	RCLC, RORC, ROT, SHA, SHL
Arithmetic	ABS, ADC, ADCF, ADD, DEC, EXTS, INC, MUL, MULU, NEG, SBB, SUB
Logical	AND, NOT, OR, XOR
Jump	ADJNZ, SBJNZ

23.2 External Bus

When resetting CNVSS pin with "H" input, contents of internal ROM cannot be read out.

23.3 External Clock

Do not stop the external clock when it is connected to the XIN pin and the main clock is selected as the CPU clock.

23.4 PLL Frequency Synthesizer

Stabilize supply voltage so that the standard of the power supply ripple is met. (Refer to **22. Electrical characteristics**.)

23.5 Power Control

- When exiting stop mode by hardware reset, set RESET pin to "L" until a main clock oscillation is stabilized.
- Set the MR0 bit in the TAiMR register (i = 0 to 4) to "0" (pulse is not output) to use the timer A to exit stop mode.
- In the main clock oscillation or low power dissipation mode, set the CM02 bit in the CM0 register to "0" (do not stop peripheral function clock in wait mode) before shifting to stop mode.
- When entering wait mode, insert a JMP.B instruction before a WAIT instruction. Do not execute any
 instructions which can generate a write to RAM between the JMP.B and WAIT instructions. Disable the
 DMA transfers, if a DMA transfer may occur between the JMP.B and WAIT instructions. After the WAIT
 instruction, insert at least 4 NOP instructions. When entering wait mode, the instruction queue roadstead
 the instructions following WAIT, and depending on timing, some of these may execute before the
 microcomputer enters wait mode.

Program example when entering wait mode

Program Example: JMP.B L1 ; Insert JMP.B instruction before WAIT instruction L1:

FSET I ; WAIT ; Enter wait mode NOP ; More than 4 NOP instructions NOP NOP NOP

When entering stop mode, insert a JMP.B instruction immediately after executing an instruction which
sets the CM10 bit in the CM1 register to "1", and then insert at least 4 NOP instructions. When entering
stop mode, the instruction queue reads ahead the instructions following the instruction which sets the
CM10 bit to "1" (all clock stops), and, some of these may execute before the microcomputer enters stop
mode or before the interrupt routine for returning from stop mode.

Program example when entering stop mode

Program Example: FSET I

BSET CM10 ; Enter stop mode

JMP.B L2 ; Insert JMP.B instruction

L2:

NOP ; More than 4 NOP instructions

NOP NOP

 Wait for main clock oscillation stabilization time, before switching the clock source for CPU clock to the main clock.

Similarly, wait until the sub clock oscillates stably before switching the clock source for CPU clock to the sub clock.

• Suggestions to reduce power consumption.

Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that high-impedance state. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

A/D converter

When A/D conversion is not performed, set the VCUT bit in the ADCON1 register to "0" (VREF not connection). When A/D conversion is performed, start the A/D conversion at least 1 μ s or longer after setting the VCUT bit to "1" (VREF connection).

D/A converter

When not performing D/A conversion, set the DAiE bit (i = 0, 1) in the DACON register to "0" (input disabled) and DAi register to "00h".

Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.

23.3 Oscillation Stop, Re-oscillation Detection Function

If the following conditions are all met, the following restriction occur in operation of oscillation stop, re-oscillation stop detection interrupt.

Conditions

- CM20 bit in CM2 register =1 (oscillation stop, re-oscillation stop detection function enabled)
- CM27 bit in CM2 register =1 (oscillation stop, re-oscillation stop detection interrupt)
- CM02 bit in CM0 register =0 (do not stop peripheral function clock in wait mode)
- Enter wait mode from high-speed or middle-speed mode

Restriction

If the oscillation of XIN stops during wait mode, the oscillation stop, re-oscillation stop detection interrupt request is generated after the microcomputer is moved out of wait mode, without starting immediately.

Figures 23.1 and 23.2 show the operation timing at oscillation stop, re-oscillation stop detection.

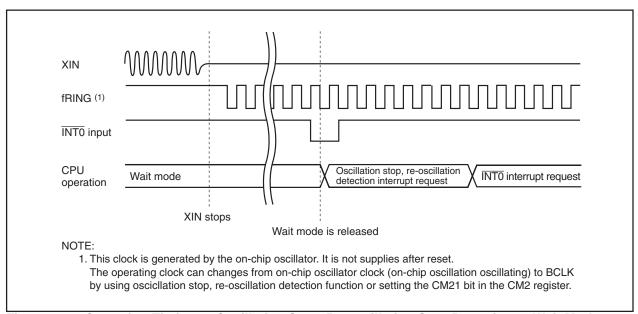


Figure 23.1 Operation Timing at Oscillation Stop, Re-oscillation Stop Detection at Wait Mode (when moving out of wait mode by using INTO interrupt)

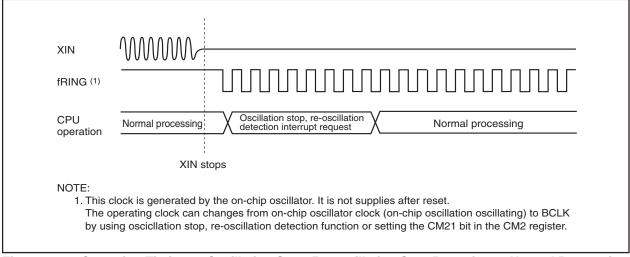


Figure 23.2 Operation Timing at Oscillation Stop, Re-oscillation Stop Detection at Normal Processing

23.7 Protection

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be set to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or no DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction.

M16C/6N Group (M16C/6NL, M16C/6NN)

23.8 Interrupt

23.8.1 Reading Address 00000h

Do not read the address 00000h in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 00000h during the interrupt sequence. At this time, the IR bit for the accepted interrupt is set to "0".

If the address 00000h is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to "0". This causes a problem that the interrupt is canceled, or an unexpected interrupt request is generated.

23.8.2 Setting SP

Set any value in the SP (USP, ISP) before accepting an interrupt. The SP (USP, ISP) is set to "0000h" after reset. Therefore, if an interrupt is accepted before setting any value in the SP (USP, ISP), the program may go out of control.

Especially when using NMI interrupt, set a value in the ISP at the beginning of the program. For the first and only the first instruction after reset, all interrupts including $\overline{\text{NMI}}$ interrupt are disabled.

23.8.3 NMI Interrupt

- The NMI interrupt cannot be disabled. If this interrupt is unused, connect the NMI pin to VCC via a resistor (pull-up).
- The input level of the NMI pin can be read by accessing the P8_5 bit in the P8 register. Note that the P8_5 bit can only be read when determining the pin level in NMI interrupt routine.
- Stop mode cannot be entered into while input on the NMI pin is low. This is because while input on the NMI pin is low the CM10 bit in the CM1 register is fixed to "0".
- Do not go to wait mode while input on the NMI pin is low. This is because when input on the NMI pin
 goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip
 does not drop. In this case, normal condition is restored by an interrupt generated thereafter.
- The low and high level durations of the input signal to the NMI pin must each be 2 CPU clock cycles + 300 ns or more.

23.8.4 Changing Interrupt Generate Factor

If the interrupt generate factor is changed, the IR bit of the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). If you changed the interrupt generate factor for an interrupt that needs to be used, be sure to set the IR bit for that interrupt to "0" (interrupt not requested).

Changing the interrupt generate factor referred to here means any act of changing the source, polarity or timing of the interrupt assigned to each software interrupt number. Therefore, if a mode change of any peripheral function involves changing the generate factor, polarity or timing of an interrupt, be sure to set the IR bit for that interrupt to "0" (interrupt not requested) after making such changes. Refer to the description of each peripheral function for details about the interrupts from peripheral functions.

Figure 23.3 shows the procedure for changing the interrupt generate factor.

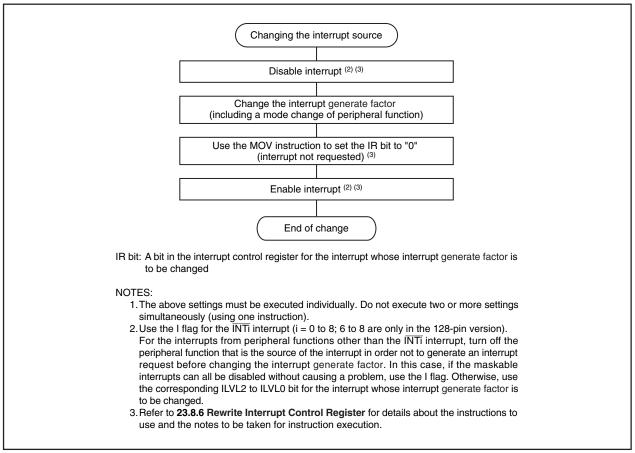


Figure 23.3 Procedure for Changing Interrupt Generate Factor

23.8.5 INT Interrupt

- Either an "L" level of at least tW(INH) or an "H" level of at least tW(INL) width is necessary for the signal input to pins INT0 to INT8 (1) regardless of the CPU operation clock.
- If the POL bit in the INT0IC to INT8IC registers ⁽²⁾, the IFSR10 to IFSR15 bits in the IFSR1 register or the IFSR23 to IFSR25 bits ⁽³⁾ in the IFSR2 register are changed, the IR bit may inadvertently set to "1" (interrupt requested). Be sure to set the IR bit to "0" (interrupt not requested) after changing any of those register bits.

NOTES:

- 1. The pins INT6 to INT8 are only in the 128-pin version.
- 2. The INT6IC to INT8IC registers are only in the 128-pin version.
- 3. The IFSR23 to IFSR25 bits are effective only in the128-pin version. In the 100-pin version, these bits are set to "0" (one edge).

23.8.6 Rewrite Interrupt Control Register

- (a) The interrupt control register for any interrupt should be modified in places where no interrupt requests may be generated. Otherwise, disable the interrupt before rewriting the interrupt control register.
- (b) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the instruction to be used.

Changing any bit other than IR bit

If while executing an instruction, an interrupt request controlled by the register being modified is generated, the IR bit of the register may not be set to "1" (interrupt requested), with the result that the interrupt request is ignored. If such a situation presents a problem, use the instructions shown below to modify the register.

Usable instructions: AND, OR, BCLR, BSET

Changing IR bit

Depending on the instruction used, the IR bit may not always be set to "0" (interrupt not requested). Therefore, be sure to use the MOV instruction to set the IR bit to "0".

(c) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as you set the I flag. (Refer to (b) for details about rewrite the interrupt control registers in the sample program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to "1" (interrupt enabled) before the interrupt control register is rewritten, owing to the effects of the internal bus and the instruction queue buffer.

Example 1: Using the NOP instruction to keep the program waiting until the interrupt control register is modified

```
INT SWITCH1:
```

```
FCLR
                            ; Disable interrupt.
```

AND.B #00h, 0055h ; Set the TA0IC register to "00h".

NOP

NOP

FSET ; Enable interrupt.

The number of the NOP instruction is as follows.

```
• The PM20 bit in the PM2 register = 1 (1 wait) : 2
```

• The PM20 bit = 0 (2 waits) : 3

• When using HOLD function: 4

Example 2: Using the dummy read to keep the FSET instruction waiting

INT_SWITCH2:

```
FCLR
                            ; Disable interrupt.
```

AND.B #00h, 0055h ; Set the TA0IC register to "00h".

MOV.W MEM, R0 ; Dummy read. **FSET** ; Enable interrupt.

Example 3: Using the POPC instruction to changing the I flag

INT SWITCH3:

PUSHC FLG

FCLR ; Disable interrupt.

AND.B #00h, 0055h ; Set the TA0IC register to "00h".

POPC FLG ; Enable interrupt.

23.8.7 Watchdog Timer Interrupt

Initialize the watchdog timer after the watchdog timer interrupt request is generated.

23.9 **DMAC**

23.9.1 Write to DMAE Bit in DMiCON Register (i = 0, 1)

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to "1" again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Step 1: Write "1" to the DMAE bit and DMAS bit in the DMiCON register simultaneously (1).

Step 2: Make sure that the DMAi is in an initial state (2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

NOTES:

- 1. The DMAS bit remains unchanged even if "1" is written. However, if "0" is written to this bit, it is set to "0" (DMA not requested). In order to prevent the DMAS bit from being modified to "0, "1" should be written to the DMAS bit when "1" is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained.
 - Similarly, when writing to the DMAE bit with a read-modify-write instruction, "1" should be written to the DMAS bit in order to maintain a DMA request which is generated during execution.
- 2. Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register is "1".) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

23.10 Timers

23.10.1 Timer A

23.10.1.1 Timer A (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register and the TAi register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register is modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the counter is read at the same time it is reloaded, the value "FFFFh" is read. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

23.10.1.2 Timer A (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the UDF register, the TAZIE, TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the UDF register, the TAZIE, TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, "FFFFh" can be read in underflow, while reloading, and "0000h" in overflow. When setting the TAi register to a value during a counter stop, the setting value can be read before a counter starts counting. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

23.10.1.3 Timer A (One-shot Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TAOTGL and TAOTGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

When setting the TAiS bit to "0" (count stop), the followings occur:

- A counter stops counting and a content of reload register is reloaded.
- TAiOUT pin outputs "L".
- After one cycle of the CPU clock, the IR bit in the TAilC register is set to "1" (interrupt request).

Output in one-shot timer mode synchronizes with a count source internally generated. When an external trigger has been selected, one-cycle delay of a count source as maximum occurs between a trigger input to TAilN pin and output in one-shot timer mode.

The IR bit is set to "1" when timer operation mode is set with any of the following procedures:

- Select one-shot timer mode after reset.
- Change an operation mode from timer mode to one-shot timer mode.
- Change an operation mode from event counter mode to one-shot timer mode.

To use the Timer Ai interrupt (the IR bit), set the IR bit to "0" after the changes listed above have been made.

When a trigger occurs, while counting, a counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a second trigger between occurring the previous trigger and operating longer than one cycle of a timer count source.

When the external trigger is selected as count start condition, do not input again the external trigger between 300 ns before the counter reachs "0000h".

23.10.1.4 Timer A (Pulse Width Modulation Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TAOTGL and TAOTGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).

Always make sure the TAiMR register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.

The IR bit is set to "1" when setting a timer operation mode with any of the following procedures:

- Select the pulse width modulation mode after reset.
- Change an operation mode from timer mode to pulse width modulation mode.
- Change an operation mode from event counter mode to pulse width modulation mode.

To use the Timer Ai interrupt (the IR bit), set the IR bit to "0" by program after the above listed changes have been made.

When setting TAiS bit to "0" (count stop) during PWM pulse output, the following action occurs:

- · Stop counting.
- When TAiOUT pin is output "H", output level is set to "L" and the IR bit is set to "1".
- When TAiOUT pin is output "L", both output level and the IR bit remain unchanged.

23.10.2 Timer B

23.10.2.1 Timer B (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit ⁽¹⁾ in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

NOTE:

1. The TB0S to TB2S bits are the bits 5 to 7 in the TABSR register, the TB3S to TB5S bits are the bits 5 to 7 in the TBSR register.

A value of a counter, while counting, can be read in the TBi register at any time. "FFFFh" is read while reloading. Setting value is read between setting values in the TBi register at count stop and starting a counter.

23.10.2.2 Timer B (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.

The counter value can be read out on-the-fly at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always "FFFh." If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the one that has been set in the register.

23.10.2.3 Timer B (Pulse Period/pulse Width Measurement Mode)

The timer remains idle after reset. Set the mode, count source, etc. using the TBiMR (i = 0 to 5) register before setting the TBiS bit in the TABSR or TBSR register to "1" (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not. To set the MR3 bit to "0" by writing to the TBiMR register while the TBiS bit = 1 (count starts), be sure to write the same value as previously written to the TM0D0, TM0D1, MR0, MR1, TCK0 and TCK1 bits and a 0 to the MR2 bit.

The IR bit in the TBiIC register goes to "1" (interrupt request), when an effective edge of a measurement pulse is input or timer Bi is overflowed. The factor of interrupt request can be determined by use of the MR3 bit in the TBiMR register within the interrupt routine.

If the source of interrupt cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times Timer B has overflowed.

To set the MR3 bit to "0" (no overflow), set the TBiMR register with setting the TBiS bit to "1" and counting the next count source after setting the MR3 bit to "1" (overflow).

Use the IR bit in the TBilC register to detect only overflows. Use the MR3 bit only to determine the interrupt factor.

When a count is started and the first effective edge is input, an indeterminate value is transferred to the reload register. At this time, Timer Bi interrupt request is not generated.

A value of the counter is indeterminate at the beginning of a count. The MR3 bit may be set to "1" and Timer Bi interrupt request may be generated between a count start and an effective edge input.

For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

M16C/6N Group (M16C/6NL, M16C/6NN)

If there is a possibility that you may write data to TAi-1 register (i = 1, 2, 4) near Timer B2 overflow, read the value of TB2 register, verify that there is sufficient time until Timer B2 overflows, before doing an immediate

write to TAi-1 register.

In order to shorten the period from reading TB2 register to writing data to TAi-1 register, ensure that no interrupt will be processed during this period.

If there is not enough time till Timer B2 overflows, only write to TAi-1 register after Timer B2 overflowed.

23.12 Serial Interface

23.12.1 Clock Synchronous Serial I/O Mode

23.11.1.1 Transmission/reception

With an external clock selected, and choosing the RTS function, the output level of the RTSi pin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the RTSi pin goes to "H" when reception starts. So if the RTSi pin is connected to the CTSi pin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the RTS function has no effect.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the $\overline{\text{RTS2}}$ and CLK2 pins go to a high-impedance state.

23.12.1.2 Transmission

When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit in the UiC1 register = 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in UiTB register)
- If CTS function is selected, input on the CTSi pin = L

23.12.1.3 Reception

In operating the clock synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TXDi (i = 0 to 2) pin when receiving data.

When an internal clock is selected, set the TE bit in the UiC1 register to "1" (transmission enabled) and write dummy data to the UiTB register, and the shift clock will thereby be generated. When an external clock is selected, set the TE bit to "1" and write dummy data to the UiTB register, and the shift clock will be generated when the external clock is fed to the CLKi input pin.

When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the RI bit in the UiC1 register = 1 (data present in the UiRB register), an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error occurred). In this case, because the content of the UiRB register is indeterminate, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the IR bit in the SiRIC register does not change state.

To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.

When an external clock is selected, the conditions must be met while if the CKPOL bit = 0, the external clock is in the high state; if the CKPOL bit = 1, the external clock is in the low state.

- The RE bit in the UiC1 register = 1 (reception enabled)
- The TE bit in the UiC1 register = 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in the UiTB register)

23.12.2 Special Modes

23.12.2.1 Special Mode 1 (I²C Mode)

When generating start, stop and restart conditions, set the STSPSEL bit in the UiSMR4 register to "0" (start and stop conditions not output) and wait for more than half cycle of the transfer clock before setting each condition generate bit (STAREQ, RSTAREQ and STPREQ bits) from "0" (clear) to "1" (start).

23.12.2.2 Special Mode 2

If a low-level signal is applied to the NMI pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the $\overline{\text{RTS2}}$ and CLK2 pins go to a high-impedance state.

23.12.2.3 Special Mode 4 (SIM Mode)

A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to "1" (transmission complete) and U2ERE bit in the U2C1 register to "1" (error signal output) after reset. Therefore, when using SIM mode, be sure to set the IR bit to "0" (no interrupt request) after setting these bits.

23.12.3 SI/Oi (i = 3 to 6) (1)

The SOUTi default value which is set to the SOUTi pin by the SMi7 in the SiC register bit approximately 10ns may be output when changing the SMi3 bit in the SiC register from "0" (I/O port) to "1" (SOUTi output and CLKi function) while the SMi2 bit in the SiC register to "0" (SOUTi output) and the SMi6 bit is set to "1" (internal clock). And then the SOUTi pin is held high-impedance.

If the level which is output from the SOUTi pin is a problem when changing the SMi3 bit from "0" to "1", set the default value of the SOUTi pin by the SMi7 bit.

NOTE:

1. SI/O5 and SI/O6 are only in the 128-pin version.

23.13 A/D Converter

Set the ADCON0 (except bit 6), ADCON1 and ADCON2 registers when A/D conversion is stopped (before a trigger occurs).

When the VCUT bit in the ADCON1 register is changed from "0" (VREF not connected) to "1" (VREF connected), start A/D conversion after passing 1 µs or longer.

To prevent noise-induced device malfunction or latch-up, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi (i = 0 to 7), ANO_i, and AN2_i) each and the AVSS pin. Similarly, insert a capacitor between the VCC pin and the VSS pin. Figure 23.4 shows an example connection of each pin.

Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the TGR bit in the ADCON0 register = 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).

When using key input interrupt, do not use any of the four AN4 to AN7 pins as analog inputs. (A key input interrupt request is generated when the A/D input voltage goes low.)

The ϕ AD frequency must be 10 MHz or less. Without sample and hold, limit the ϕ AD frequency to 250 kHz or more. With the sample and hold, limit the ϕ AD frequency to 1 MHz or more.

When changing an A/D operation mode, select analog input pin again in the CH2 to CH0 bits in the ADCON0 register and the SCAN1 to SCAN0 bits in the ADCON1 register.

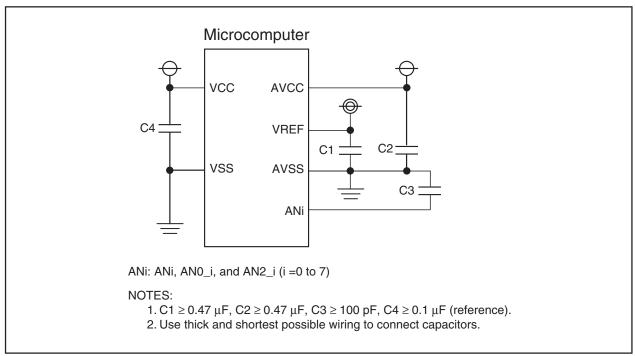


Figure 23.4 Use of Capacitors to Reduce Noise

If the CPU reads the ADi register at the same time the conversion result is stored in the ADi register after completion of A/D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a sub clock is selected for CPU clock.

- When operating in one-shot or single-sweep mode
 Check to see that A/D conversion is completed before reading the target ADi register. (Check the IR bit in the ADIC register to see if A/D conversion is completed.)
- When operating in repeat mode or repeat sweep mode 0 or 1
 Use the main clock for CPU clock directly without dividing it.

If A/D conversion is forcibly terminated while in progress by setting the ADST bit in the ADCON0 register to "0" (A/D conversion halted), the conversion result of the A/D converter is indeterminate. The contents of ADi registers irrelevant to A/D conversion may also become indeterminate. If while A/D conversion is underway the ADST bit is set to "0" in a program, ignore the values of all ADi registers.

When setting the ADST bit to "0" in single sweep mode during A/D conversion and A/D conversion is aborted, disable the interrupt before setting the ADST bit to "0".

The applied intermediate potential may cause more increase in power consumption than other analog input pins (AN0 to AN3, AN0_0 to AN0_7 and AN2_0 to AN2_7), since the AN4 to AN7 are used with the $\overline{\text{KI0}}$ to $\overline{\text{KI3}}$.

23.14 CAN Module

23.14.1 Reading COSTR Register

The CAN module on the M16C/6N Group (M16C/6NL, M16C/6NN) updates the status of the C0STR register in a certain period. When the CPU and the CAN module access to the C0STR register at the same time, the CPU has the access priority; the access from the CAN module is disabled. Consequently, when the updating period of the CAN module matches the access period from the CPU, the status of the CAN module cannot be updated. (See **Figure 23.5 When Updating Period of CAN Module Matches Access Period from CPU**.)

Accordingly, be careful about the following points so that the access period from the CPU should not match the updating period of the CAN module:

- (a) There should be a wait time of 3fCAN or longer (see **Table 23.3 CAN Module Status Updating Period**) before the CPU reads the COSTR register. (See **Figure 23.6 With a Wait Time of 3fCAN Before CPU Read**.)
- (b) When the CPU polls the C0STR register, the polling period must be 3fCAN or longer. (See **Figure 23.7** When Polling Period of CPU is 3fCAN or Longer.)

Table 23.3 CAN Module Status Updating Period

rabio 2010 Ozar modalo Otarao Opaamig i orioa	
3fCAN Period = 3 × XIN (Original Oscillation Period) >	× Division Value of CAN Clock (CCLK)
(Example 1) Condition XIN 16 MHz CCLK: Divided by 1	3fCAN period = $3 \times 62.5 \text{ ns} \times 1 = 187.5 \text{ ns}$
(Example 2) Condition XIN 16 MHz CCLK: Divided by 2	3fCAN period = 3×62.5 ns $\times 2 = 375$ ns
(Example 3) Condition XIN 16 MHz CCLK: Divided by 4	3fCAN period = 3×62.5 ns $\times 4 = 750$ ns
(Example 4) Condition XIN 16 MHz CCLK: Divided by 8	3fCAN period = 3×62.5 ns $\times 8 = 1.5 \mu$ s
(Example 5) Condition XIN 16 MHz CCLK: Divided by 16	3fCAN period = 3×62.5 ns $\times 16 = 3 \mu s$

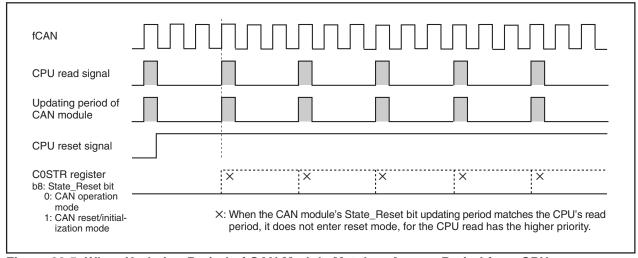


Figure 23.5 When Updating Period of CAN Module Matches Access Period from CPU

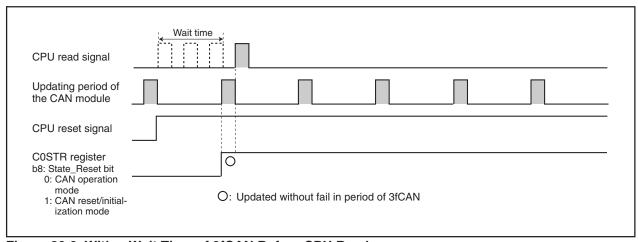


Figure 23.6 With a Wait Time of 3fCAN Before CPU Read

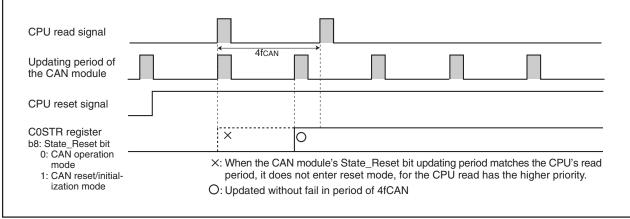


Figure 23.7 When Polling Period of CPU is 3fCAN or Longer

23.14.2 Performing CAN Configuration

If the Reset bit in the COCTLR register is changed from "0" (operation mode) to "1" (reset/initialization mode) in order to place the CAN module from CAN operation mode into CAN reset/initialization mode, always be sure to check that the State_Reset bit in the COSTR register is set to "1" (reset mode). Similarly, if the Reset bit is changed from "1" to "0" in order to place the CAN module from CAN reset/initialization mode into CAN operation mode, always be sure to check that the State_Reset bit is set to "0" (operation mode).

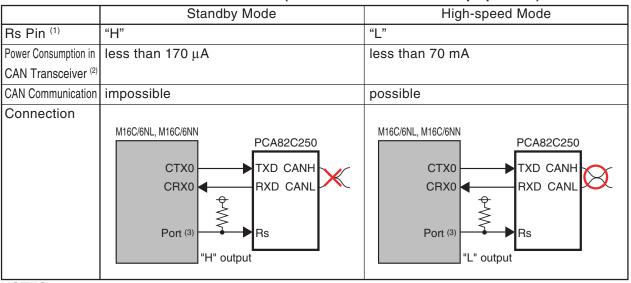
The procedure is described below.

To place CAN Module from CAN Operation Mode into CAN Reset/Initialization Mode

- Change the Reset bit from "0" to "1".
- Check that the State_Reset bit is set to "1".

To place CAN Module from CAN Reset/Initialization Mode into CAN Operation Mode

- Change the Reset bit from "1" to "0".
- Check that the State_Reset bit is set to "0".


23.14.3 Suggestions to Reduce Power Consumption

When not performing CAN communication, the operation mode of CAN transceiver should be set to "standby mode" or "sleep mode".

When performing CAN communication, the power consumption in CAN transceiver in not performing CAN communication can be substantially reduced by controlling the operation mode pins of CAN transceiver.

Tables 23.4 and 23.5 show recommended pin connections.

Table 23.4 Recommended Pin Connections (In case of PCA82C250: Philips product)

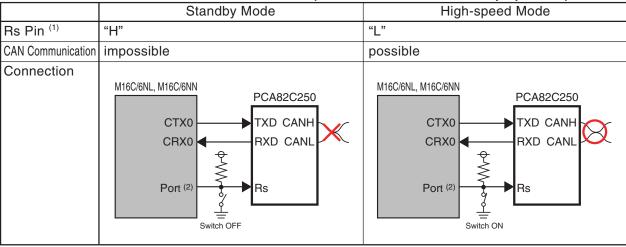
NOTES:

- 1. The pin which controls the operation mode of CAN transceiver.
- 2. In case of Ta = 25 °C
- 3. Connect to enabled port to control CAN transceiver.

Table 23.5 Recommended Pin Connections (In case of PCA82C252: Philips product)

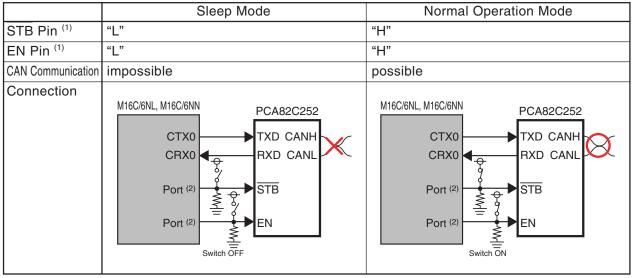
Table 23.5 Recommended Pin Connections (in case of PCA82C252: Philips product)				
	Sleep Mode	Normal Operation Mode		
STB Pin (1)	"L"	"H"		
EN Pin (1)	"L"	"H"		
Power Consumption in	less than 50 μA	less than 35 mA		
CAN Transceiver (2)				
CAN Communication	impossible	possible		
Connection	M16C/6NL, M16C/6NN PCA82C252 TXD CANH RXD CANL Port (3) Port (3) Port (3) Purity output	CTX0 CRX0 Port (3) Port (4) Port (4) Port (5) Po		

NOTES:


- 1. The pin which controls the operation mode of CAN transceiver.
- 2. Ta = 25 °C
- 3. Connect to enabled port to control CAN transceiver.

23.14.4 CAN Transceiver in Boot Mode

When programming the flash memory in boot mode via CAN bus, the operation mode of CAN transceiver should be set to "high-speed mode" or "normal operation mode". If the operation mode is controlled by the microcomputer, CAN transceiver must be set the operation mode to "high-speed mode" or "normal operation mode" before programming the flash memory by changing the switch etc. Tables 23.6 and 23.7 show pin connections of CAN transceiver.


Table 23.6 Pin Connections of CAN Transceiver (In case of PCA82C250: Philips product)

NOTES:

- 1. The pin which controls the operation mode of CAN transceiver.
- 2. Connect to enabled port to control CAN transceiver.

Table 23.7 Pin Connections of CAN Transceiver (In case of PCA82C252: Philips product)

NOTES:

- 1. The pin which controls the operation mode of CAN transceiver.
- 2. Connect to enabled port to control CAN transceiver.

23.15 Programmable I/O Ports

If a low-level signal is applied to the NMI pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on NMI pin enabled), the P7_2 to P7_5, P8_0 and P8_1 pins go to a high-impedance state.

Setting the SM32 bit in the S3C register to "1" causes the P9_2 pin to go to a high-impedance state. Setting the SM42 bit in the S4C register to "1" causes the P9_6 pin to go to a high-impedance state ⁽¹⁾. Setting the SM52 bit in the S5C register to "1" causes the P11_2 pin to go to a high-impedance state ⁽²⁾. Setting the SM62 bit in the S6C register to "1" causes the P11_6 pin to go to a high-impedance state ⁽²⁾.

NOTES:

- 1. When using SI/O4, set the SM43 bit in the S4C register to "1" (SOUT4 output, CLK4 function) and the port direction bit corresponding for SOUT4 pin to "0" (input mode).
- 2. The S5C and S6C registers are only in the 128-pin version. When using these registers, set these registers after setting the PU37 bit in the PUR3 register to "1" (Pins P11 to P14 are usable).

The input threshold voltage of pins differs between programmable I/O ports and peripheral functions. Therefore, if any pin is shared by a programmable I/O port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side—the programmable I/O port or the peripheral function—is currently selected.

When changing the PD14_i bit (i = 0, 1) in the PC14 register from "0" (input port) to "1" (output port), follow the procedures below (128-pin version only).

Setting Procedure

(1) Set P14_i bit :MOV.B #0000001b, PC14 ; P14_i bit setting

(2) Change PD14_i bit to "1" by MOV instruction :MOV.B #00110001b, PC14 ; Change to output port

Indeterminate values are read from the P3_7 to P3_4, PD3_7 to PD3_4 bits by reading the P3 and PD3 registers when the PM01 to PM00 bits in the PM0 register are set to "01b" (memory expansion mode) or "11b" (microprocessor mode) and setting the PM11 bit to "1".

Use the MOV instruction when rewriting the P3 and PD3 registers (including the case that the size specifier is ".W" and the P2 and PD2 registers are rewritten).

When the PM01 to PM00 bits are rewritten, "L" is output from the P3_7 to P3_4 pins during 0.5 cycles of the BCLK by setting the PM01 to PM00 bits in the PM0 register to "01b" (memory expansion mode) or "11b" (microprocessor mode) from "00b" (single-chip mode) after setting the PM11 bit to "1".

23.16 Dedicated Input Pin

When dedicated input pin voltage is larger than VCC pin voltage, latch up occurs.

When different power supplied to the system, and input voltage of unused dedicated input pin is larger than voltage of VCC pin, connect dedicated input pin to VCC via resistor (approximately $1k\Omega$).

Figure 23.8 shows the circuit connection.

This note is also applicable when VINPUT exceeds VCC during power-up.

The resistor is not necessary when VCC pin voltage is same or larger than dedicated input pin voltage.

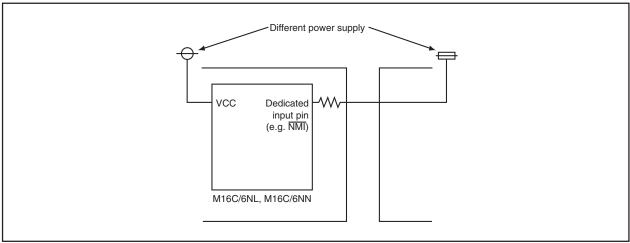


Figure 23.8 Circuit Connection

23.17 Electrical Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flash memory version.

23.18 Mask ROM Version

When using the masked ROM version, write nothing to internal ROM area.

Under development

23.19 Flash Memory Version

23.19.1 Functions to Prevent Flash Memory from Rewriting

ID codes are stored in addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF3h, 0FFFF7h, and 0FFFFBh. If wrong data are written to theses addresses, the flash memory cannot be read or written in standard serial I/O mode and CAN I/O mode.

The ROMCP register is mapped in address 0FFFFh. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of microcomputer, these addresses are allocated to the vector addresses (H) of fixed vectors.

23.19.2 Stop Mode

When the microcomputer enters stop mode, execute the instruction which sets the CM10 bit to "1" (stop mode) after setting the FMR01 bit to "0" (CPU rewrite mode disabled) and disabling the DMA transfer.

23.19.3 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

23.19.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- · Erase all unlocked blocks
- Lock bit program
- · Read lock bit status

23.19.5 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

23.19.6 Program Command

By writing "xx40h" in the first bus cycle and data to the write address in the second bus cycle, an auto program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

23.19.7 Lock Bit Program Command

By writing "xx77h" in the first bus cycle and "xxD0h" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

23.19.8 Operation Speed

Before entering CPU rewrite mode (EW0 or EW1 mode), set the CM11 bit in the CM1 register to "0" (main clock), select 10 MHz or less for CPU clock using the CM06 bit in the CM0 register and CM17 to CM16 bits in the CM1 register. Also, set the PM17 bit in the PM1 register to "1" (with wait state).

M16C/6N Group (M16C/6NL, M16C/6NN)

23.19.9 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

23.19.10 Interrupt

EW0 Mode

To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.

- The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt request is generated. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt request is generated. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

EW1 Mode

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when the interrupt request is generated. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt request is generated. Execute the rewrite program again after exiting the interrupt service routine.

23.19.11 How to Access

To set the FMR01, FMR02 or FMR11 bit to "1", write "1" after first setting the bit to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while an "H" signal is applied to the NMI pin.

23.19.12 Rewriting in User ROM Area

EW0 Mode

The supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode or CAN I/O mode.

EW1 Mode

Avoid rewriting any block in which the rewrite control program is stored.

23.19.13 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (auto programming or auto erasing).

23.20 Flash Memory Programming Using Boot Program

When programming the internal flash memory using boot program, be careful about the pins state and connection as follows.

23.20.1 Programming Using Serial I/O Mode

CTX0 pin: This pin automatically outputs "H" level.

CRX0 pin: Connect to CAN transceiver or connect via resister to VCC (pull-up)

Figure 23.9 shows a pin connection example for programming using serial I/O mode.

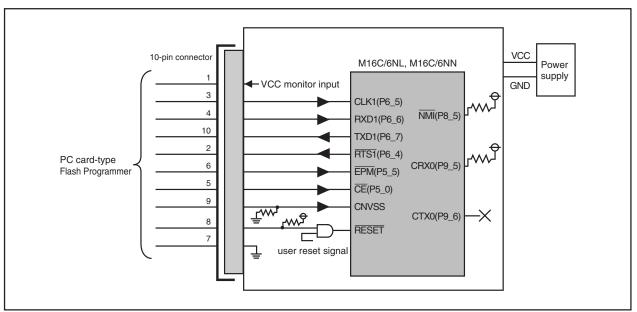


Figure 23.9 Pin Connection for Programming Using Serial I/O Mode

23.20.2 Programming Using CAN I/O Mode

RTS1 pin: This pin automatically outputs "H" and "L" level.

Figure 23.10 shows a pin connection example for programming using CAN I/O mode.

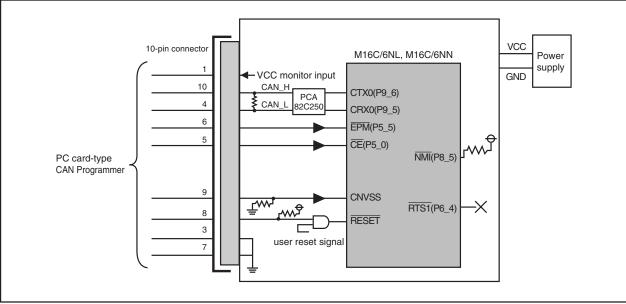


Figure 23.10 Pin Connection for Programming Using CAN I/O Mode

23.21 Noise

Connect a bypass capacitor (approximately 0.1 μ F) across the VCC1 and VSS pins, and VCC2 and VSS pins using the shortest and thicker possible wiring. Figure 23.11 shows the bypass capacitor connection.

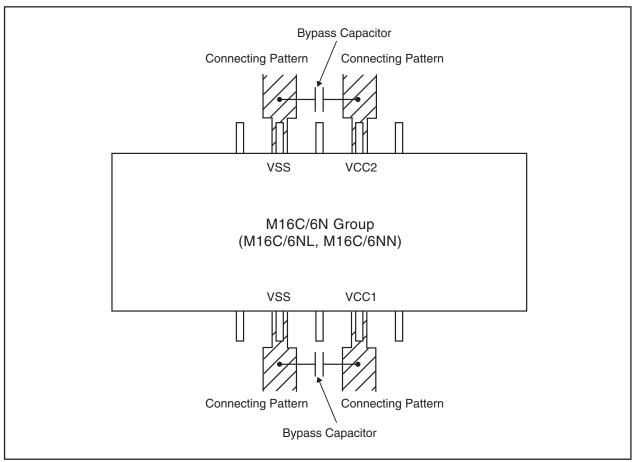
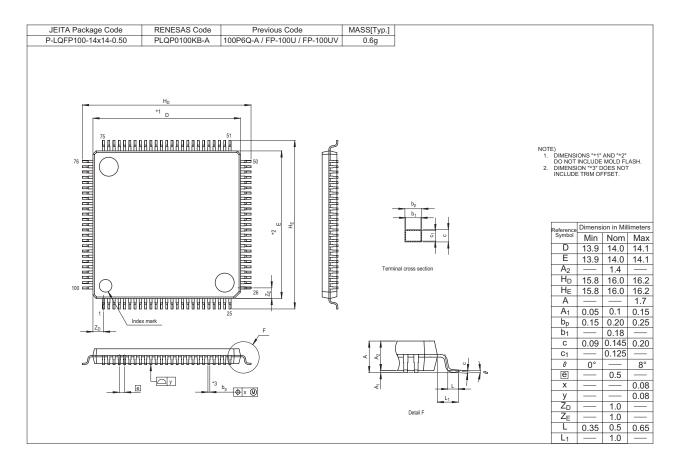
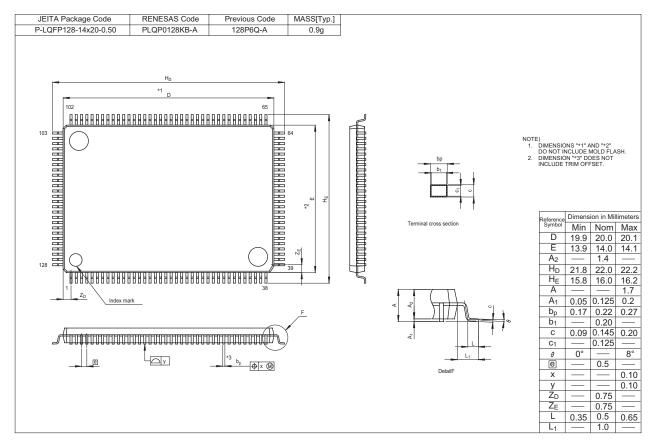




Figure 23.11 Bypass Capacitor Connection

Appendix 1. Package Dimensions

M16C/6N Group (M16C/6NL, M16C/6NN)

Memo

Register Index

Α		DM0SL	100	S5IC, S6IC	81
AD0 to AD7	200	DM1SL	101	SAR0, SAR1	102
ADCON0 199,202,204,2		DTT	137		т
ADCON1 199,202,204,2		F			•
ADCON2		-			111
ADIC		FMR0	_		
AIER		FMR1	262		111,114,116,121,123
AIER2	95	1			111,138
		ICTB2	130		138
С		IDB0, IDB1			
C01ERRIC	81	IFSR0			111,114,116,121,123,141
C01WKIC	81	IFSR1			111,138
C0AFS	229	IFSR2			138 82
C0CONR	228	INTOIC to INT8IC			
C0CTLR	224	INVC0			,114,116,118,121,123,141
C0GMR	222	INVC1			111
C0ICR	227	114401	100		82 . 111,114,116,118,121,123
C0IDR	227	K			
C0LMAR	222	KUPIC	81		111,138
C0LMBR	222				
COMCTL0 to COMCTL15	223	0			81
CORECIC	81	ONSF	113		,114,116,118,121,123,141
CORECR	229	_			112,127,140
C0SSTR	227	Р			126 81
C0STR	226	P0 to P13	251		126,128,129,131
COTECR	229	PC14	251		
COTRMIC	81	PCLKR	56		126 82
C0TSR	229	PCR	253		126,128,129,131
C1CTLR	225	PD0 to PD13	250		126,126,129,131
CAN0 Slot 0 to 15		PLC0	58		120,130
: Time Stamp	220,221	PM0	35		126,128,129,131,141
: Data Field	220,221	PM1	36		120,120,129,131,141
: Message Box	220,221	PM2	57		126
CCLKR	57	PRCR	75		
CM0	53	PUR0 to PUR2	252		126,128,129,131
CM1	54	PUR3	253		120,120,129,131
CM2	55	В			81
CPSRF	113,127	R			126,128,129,131
CRCD		RMAD0 to RMAD3			120,120,123,131
CRCIN	216	ROMCP	259	_	81
CSE		S			126,128,129,131
CSR	41		0.4		
D		SORIC to S2RIC		_	102
_	245	SOTIC to S2TIC			102
DA0, DA1		S3456TRR			113,140
DACON		S3BRG to S6BRG			110,140
DAR0, DAR1		S3C to S6C			
DM0CON, DM1CON		S3IC, S4IC			
DM0IC, CM1IC	81	S3TRR to S6TRR	192		

U

U0BCNIC to U2BCNIC 81
U0BRG to U2BRG 148
U0C0 to U2C0 149
U0C1 to U2C1 150
U0MR to U2MR 149
U0RB to U2RB 148
U0SMR to U2SMR 151
U0SMR2 to U2SMR2 152
U0SMR3 to U2SMR3 152
U0SMR4 to U2SMR4 153
U0TB to U2TB 148
UCON151
UDF112
W
WDC 97
WDTS 97

REVISION HISTORY

M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

D	Dete	Description	
Rev.	Date	Page	Summary
1.00	Sep. 30, 2004	_	First edition issued
1.01	Nov. 01, 2004	-	Revised edition issued
			* Revised parts and revised contents are as follows (except for expressional change).
		267	Table 21.2 Recommended Operating Conditions (1)
			● IoH(peak): Unit is revised from "V" to "mA".
		268	Table 21.3 Recommended Operating Conditions (2)
			• NOTE 3: "VCC = 3.0 ± 0.3 V" is revised to "VCC = 3.3 ± 0.3 V".
		288	22.9.1.2 Timer A (Event Counter Mode) is revised.
1.02	Jul. 01, 2005	-	Revised edition issued
			* Revised parts and revised contents are as follows (except for expressional change).
		5	Table 1.3 Product List is revised.
		13	Figure 4.1 SFR Information (1): The value of After Reset in CM2 Register is revised.
		19	Figure 4.7 SFR Information (7): NOTE 1 is revised.
		35	Figure 7.4 CM2 Register: The value of After Reset is revised.
		51	Figure 7.13 State Transition in Normal Operation Mode: NOTE 7 is revised.
		74	9.10 Address Match Interrupt: After of 13th line
			• "Note that when using the external bus in 8-bit width, no address match interrupts
		170	can be used for external areas." is deleted.
		172	Figure 14.37 (upper) SiC Register: NOTE 4 is revised.
		203	Figure 18.6 C0MCTLj Registers • RemActive bit: Function is revised.
			RspLock bit: Bit Name is revised. NOTE 2 is revised.
		204	Figure 18.7 C0CTLR Registers (upper)
		204	LoopBack bit: The expression of Function is revised.
			BasicCAN bit: The expression of Function is revised.
			Figure 18.7 C0CTLR Registers (lower)
			TSPreScale bit: Bit Symbol is revised. ("Bit1, Bit0" is deleted.)
			TSReset bit: The expression of Function is revised.
			RetBusOff bit: The expression of Function is revised.
			RXOnly bit: The expression of Function is revised.
		206	Figure 18.9 COSTR Registers (upper): NOTE 1 is deleted.
			Figure 18.9 C0STR Registers (lower)
			State_LoopBack bit: The expression of Function is revised.
			State_BasicCAN bit: The expression of Function is revised.
		209	Figure 18.12 CORECR Register, COTECR Register, COTSR Register and COAFS Register
			CORECR Register: NOTE 2 is deleted.
			COTECR Register: NOTE 1 is deleted.
			COTSR Register: NOTE 1 is deleted.
		220	18.15.1 Reception (1): "(refer to 18.15.2 Transmission)" is deleted.
		225	Figure 19.1 I/O Ports (1): "P7_0" in 4th figure is deleted.
		227	Figure 19.3 I/O Ports (3): "P7_0" is added to middle figure.
		229	Figure 19.6 I/O Pins: NOTE 1 is deleted.

Dov	Doto		Description
Rev.	Date	Page	Summary
1.02	Jul. 01, 2005	269	Table 21.4 Electrical Characteristics (1)
			 Measuring Condition of Vol is revised from "Lol = -200μA" to "Lol = 200μA".
		270	Table 21.5 Electrical Characteristics (2): Mask ROM (5th item)
			• "f(XCIN)" is changed to "(f(BCLK)).
		271	Table 21.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is deleted.
		304	22.14 Programmable I/O Ports: last 1 to 2 lines
			• (1) Setting Procedure is revised from "#00 <u>01</u> 0000b" to "#000000 <u>01</u> b".
			• (2) Setting Procedure is revised from "#00010011b" to "#00110001b".
2.00	Nov. 28, 2005	_	Revised edition issued
			* Memory expansion and microprocessor modes are added.
			* Revised parts and revised contents are as follows (except for expressional change).
		2	Table 1.1 Performance Outline (100-pin version): Operation Mode is revised.
		3	Table 1.2 Performance Outline (128-pin version): Operation Mode is revised.
		5	Table 1.3 Product List: NOTE 1 is added.
		6	Figure 1.3 Pin Configuration (1): Bus control pins are added.
		7, 8	Tables 1.4 and 1.5 Pin Characteristics in 100-pin version (1)(2) are added.
		9	Figure 1.4 Pin Configuration (2): Bus control pins are added.
		10 to 12	Tables 1.6 to 1.8 Pin Characteristics in 128-pin version (1)(2)(3) are added.
		13 to 15	Tables 1.8 to 1.10 Pin Description (1)(2)(3) are revised.
		18	3. Memory: Last sentence (In memory expansion) is added.
		40	Figure 3.1 Memory Map: NOTES 1 and 2 are added.
		19	Table 4.1 SFR Information (1)
			Value of After Reset in PM0 is revised. CSB Register is added to 0000b.
			CSR Register is added to 0008h. CSE Register is added to 0018h.
			CSE Register is added to 001Bh. NOTE 1 is added.
		30	Table 4.12 SFR Information (12)
		30	Value of After Reset in PUR1 is revised.
			NOTE 1 is added.
		31 to 33	5. Reset: Layout is changed.
		32	Figure 5.2 Reset Sequence is revised.
		32	Table 5.1 Pin Status When RESET Pin Level is "L" is revised.
		33	5.2 Software Reset, 5.3 Watchdog Timer Reset, 5.4 Oscillation Stop Detection Reset:
			Last sentence (Processor mode remains) is added to each section.
		33	5.5 Internal Space is added.
		34	6.1 Types Processor Mode and 6.2 Setting Processor Mode are added.
			Table 6.1 Features of Processor Modes, Table 6.2 Processor Mode After Hardware
			Reset and Table 6.3 PM01 to PM00 Bits Set Values and Processor Modes are added.
		35	Figure 6.1 PM0 Register is revised.
		36	Figure 6.2 PM1 Register is revised.
		38, 39	Figures 6.4 to 6.7 Memory Map and CS Area in Memory Expansion Mode and Microprocessor
			Mode (1) to (4) are added.
		40 to 50	7. Bus is added.

	NEVISION HISTORY INTOC/ON GROUP (INTOC/ONE, INTOC/ONN) Hardware Maridan				
	Description				
Rev.	Date	Page	Summary		
2.00	Nov. 28, 2005		Figure 8.9 Examples of Main Clock Connection Circuit is revised.		
	, , , , , , , , , , , , , , , , , , ,	60	Figure 8.10 Examples of Sub Clock Connection Circuit is revised.		
		61	8.1.4 PLL Clock		
			• 9th line: The sentence (When the PLL to) is added.		
		63	8.2.1 CPU Clock and BCLK		
			• 10th line: The sentence (During memory expansion) is added.		
		65	8.4.1.6 On-chip Oscillator Mode: Last sentence (When the operation mode is) is added.		
			8.1.1.7 On-chip Oscillator Low Power Dissipation Mode: Last sentence (When the		
			operation mode is) is deleted.		
		66	Table 8.4 Pin Status During Wait Mode is revised.		
		68	Table 8.6 Interrrupts to Stop Mode and Use Conditions is added.		
			Table 8.7 Pin Status in Stop Mode is revised.		
		71	Figure 8.13 State Transition in Normal Operation Mode: NOTE 7 is deleted.		
		82	Figure 10.4 Interrupt Control Registers (2): NOTE 2 is added.		
		87	10.5.8 Returning from an Interrupt Routine: Las sentence (Register bank) is added.		
			10.5.9 Interrupt Priority: First sentence (If two or more) is revised.		
			10.5.10 Interrupt Priority Resolution Circuit: First sentence (The interrupt priority level) is revised.		
		91	Figure 10.12 IFSR1 Register: NOTES 2 and 4 are revised.		
		94	10.10 Address Match Interrupt		
			Second line from the bottom: sentence (Note that when) is added.		
		99	Table 12.1 DMAC Specifications: DMA transfer Cycles is added.		
		103	12.1 Transfer Cycle: 3rd and 4th sentences (During /Furthermore) are revised.		
			12.1.2 Effect of BYTE Pin Level is added.		
			12.1.3 Effect of Software Wait: 3rd to 9th lines is moved from next section of 12.1.2.		
			12.1.4 Effect of RDY Signal is added.		
		105	Table 12.2 DMA Transfer Cycles is revised.		
			Table 12.3 Coefficient j, k is revised.		
		107	12.5 Channel Priority and DMA Transfer Timing: Last sentence (Refer to) is added.		
		123	Figure 13.12 TA0MR to TA4MR Registers in PWM Mode: b2 is revised from "1" to "(blank)".		
		134	Figure 14.1 Three-Phase Motor Control Timer Function Block Diagram is revised.		
		135	Figure 14.2 UNVC0 Register: NOTES 5 and 6 are revised.		
		148	Figure 15.5 U0BRG to U2BRG Registers (lower): NOTE 3 is added.		
		149	Figure 15.6 U0C0 to U2C0 Registers (lower): NOTE 5 is added.		
		166	Table 15.9 Example of Bit Rates and Settings: 20 MHz is added.		
		192	Figure 15.37 SiC Register (upper): NOTE 7 is added.		
			Figure 15.37 SiBRG Register (middle): NOTE 4 is added.		
		198	Figure 16.1 A/D Converter Block Diagram		
			ADGSEL1 to ADGSEL0 (righit/lower) is revised from "10b" to "11b".		
		645	NOTE 1 is added. A A B B B B B B B B B B B B B B B B B		
		212	16.2.6 Output Impedance of Sensor under A/D Conversion		
		0.10	• 10th line: f(XIN) is revised to f(\$\phi\AD\$).		

• fAD is revised to φAD.

213

Figure 16.10 Analog Input Pin and External Sensor Equivalent Circuit

REVISION HISTORY

Pov	Data		Description
Rev.	Date	Page	Summary
2.00	Nov. 28, 2005	214	Figure 17.1 D/A Convertoer Block Diagram is revised.
		215	Figure 17.2 DA0 and DA1 Registers: Setting Range is added.
			Figure 17.3 D/A Converter Equivalent Circuit: NOTE 2 is added.
		217	Figure 18.3 CRC Calculation is partly revised.
		229	Figure 19.12 C0TECR Register (2nd register): NOTE 1 is added.
		240	19.15.1 Reception: (5) is partly revised.
		243	20. Programmable I/O Ports
			8th line (Each pin functions) is partly revised.
			Last sentence (When using) is added.
		244	20.1 PDi Register
			4 th line: The sentence (During memory expansion) is added.
			20.2 Pi Register
			9 th line: The sentence (During memory expansion) is added.
			20.3 PURj Register
		050	• 5 th line: The sentence (However, the pull-up) is added.
		250 251	Figure 20.7 PD0 to PD13 Registers: NOTE 2 is added.
		251	Figure 20.8 Pi Registers (upper): NOTE 2 is added.
		232	Figure20.9 PUR0 Register (upper): NOTE 1 is added. Figure20.9 PUR1 Register (middle): NOTES 1 to 3 are added.
		254	Table 20.3 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor
		254	Mode is added.
		255	Figure 20.12 Unassigned Pins Handling
			Figure of memory expansion mode ormicroprocessor mode is added.
			NOTE 1 is added.
		256	Table 21.2 Flash Memory Rewrite Modes Overview
			Operation Mode of CPU Rewrite Mode is revised.
			NOTE 2 is revised.
		257	21.1 Memory Map: 2nd sentence (The user ROM) is revised.
		259	Figure 21.2 ROMCP Register is revised.
		260	Table 21.3 EW0 Mode and EW1 Mode
			Flash Memory Status Detection of EW0 Mode is revised.
			NOTES 1and 2 are revised.
		261	21.3.2 EW1 Mode: Last sentence (When an erase/program) is added.
		263	21.3.3.4 FMSTP Bit
			8th line: Procedure to change the FMSTP bit setting (1) to (4) are added.
		265	Figure 21.5 Setting and Resetting of EW0 Mode
			First frame: "memory expansion mode" is added.
			NOTE 5 is revised.
			Figure 21.6 Setting and Resetting of EW1 Mode: NOTE 1 is revised.
		266	Figure 21.7 Processing Before and After Low Power Dissipation Mode or On-chipOscillator
			Low Power Dissipation Mode:
			• Title, First and second frames (left) and top of right: "on-chip oscillator low power
			dissipation mode" is addded.

REVISION HISTORY M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

Day	Doto	Description	
Rev.	Date	Page	Summary
2.00	Nov. 28, 2005	272	21.3.4.11 Stop Mode is revised.
			21.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation
			Mode is partly revised.
		271	21.3.5.5 Block Erase Command: Last sentence (Also execute) is added.
			Figure 21.9 Block Erase Command: NOTES 2 and 3 are added.
		277	Figure 21.12 Full Status Check and Handling Procedure for Each Error
			Erase error: (4) is added.
		279	Table 21.7 Pin Functions for Standard Serial I/O Mode
			Description of VCC1, VCC2, VSS is revised.
			Description of P8_4 is revised.
			NOTE 1 is revised.
			NOTE 2 is added.
		282	Figures 21.15 and 21.16 Circuit Application in Serial I/O Mode 1/2
			• "VCC1" and "VCC2" are added.
		284	Table 21.8 Pin Functions for CAN I/O Mode
			Description of VCC1, VCC2, VSS is revised.
			Description of P8_4 is revised.
		007	NOTE 1 is added. Single 24 to Circuit Application in CANLI/O Made (%/OO4) and (%/OO0) are added.
		287	Figure 21.19 Circuit Application in CAN I/O Mode: "VCC1" and "VCC2" are added.
		289	Table 22.2 Recommended Operating Conditions (1) is partly revised.
		291	Table 22.4 Electrical Characteristics (1) • V _T + - V _T -: HOLD and RDY are added.
		295	Table 22.12 Memory Expansion Mode and Microprocessor Mode is added.
		298 to 300	
			Figures 22.5 to 22.11 Timing Diagram (2) to (8) are added.
			Characteristics of 3.3 V version are added.
		325	23.2 External Bus is added.
		328	23.5 Power Control: 4th and 5th items (When entering wait mode / When entering
			stop mode) are revised.
		346	Figure 23.4 Use of Capacitors to Reduce Noise is partly revised.
		347	23.13 A/D Converter: Last item (The applied intermediate) is added.
		353	23.15 Programmable I/O Ports: 5rd and 6th items (Indeterminate values / When the
			PM01) are added.
		357	23.19.2 Stop Mode is revised.
			23.19.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation
			Mode is partly revised.
			23.19.8 Operation Speed is revised.

M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

Publication Data: Rev.1.00 Sep 30, 2004

Rev.2.00 Nov 28, 2005

Published by: Sales Strategic Planning Div. Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

M16C/6N Group (M16C/6NL, M16C/6NN) Hardware Manual

